Article contents
Processing and Characterization of Silica Xerogel Films for Low-K Dielectric Applications
Published online by Cambridge University Press: 10 February 2011
Abstract
Surface modified silica xerogel films of high porosity (60 - 90 %) and uniform thickness (0.4–2 μm) were fabricated at ambient pressure on silicon and silicon dioxide. The rheological properties that govern film uniformity were determined. A relation between the final dried film thickness and spin speed was developed. The porosity and thickness of the films could be controlled independently. The same porosity could be obtained over a wide range of aging time and temperature combinations. Fracture toughness was measured using the edge-lift-off technique. The best values were comparable to concrete. Surface modification was affected by treating the film with trimethylcholorosilane (TMCS) and other modifiers. Moisture adsorption was studied at 100% RH using a quartz crystal microbalance technique. Depending upon the degree and kind of surface treatment, films absorbed as much as 32% or as little as 2% of their weight in water. Dielectric constants (K), losses and breakdown strengths were comparable to values for calcined, bulk aerogels. Thin (≤ 500 Å) films of Copper (Cu) and Tantalum (Ta) were deposited on xerogel films and subjected to thermal annealing. No diffusion was observed within the limits of RBS. High-density plasma etching showed that the films etch an order of magnitude faster than conventional SiO2 films.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1999
References
- 13
- Cited by