Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-10T08:38:47.419Z Has data issue: false hasContentIssue false

Programmable Skins based on Core-Shell Microsphere/Nanotube/Polymer Composites

Published online by Cambridge University Press:  02 September 2015

Balaji Panchapakesan
Affiliation:
Small Systems Laboratory, Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA.
Cagdas Onal
Affiliation:
Soft Robotics Laboratory, Department of Mechanical Engineering, Robotics Engineering Program, Worcester Polytechnic Institute, Worcester, MA 01609, USA.
James Loomis
Affiliation:
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139, USA.
Get access

Abstract

In this paper, we describe unique thermally responsive polymer system based on nanotube-elastomers dispersed with core-shell expanding microspheres (phase-change material). Upon thermal or infrared stimuli, liquid hydrocarbon cores encapsulated within the microspheres vaporize, expanding the surrounding shells and stretching the matrix. Microsphere transformation resulted in visible dimensional changes associated with macroscopic volume increase (>500%), reduction in density (>80%), and increase in elastic modulus (>675%). Additionally, electrically conductive nanotubes allowed for expansion dependent electrical responses. We present our new findings on expansion dependent superhydrophobicity in these materials and present some outlook and comparison of our stimuli responsive polymers with other material systems for future origami based applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahir, S. V. and Terentjev, E. M., Nat Mater 4 (6), 491495 (2005).CrossRefGoogle Scholar
Hawkes, E., An, B., Benbernou, N. M., Tanaka, H., Kim, S., Demaine, E. D., Rus, D. and Wood, R. J., P Natl Acad Sci USA 107 (28), 1244112445 (2010).CrossRefGoogle Scholar
Felton, S., Tolley, M., Demaine, E., Rus, D. and Wood, R., Science 345 (6197), 644646 (2014).CrossRefGoogle Scholar
Smela, E., Inganas, O. and Lundstrom, I., Science 268 (5218), 17351738 (1995).CrossRefGoogle Scholar
Jager, E. W. H., Inganas, O. and Lundstrom, I., Science 288 (5475), 23352338 (2000).CrossRefGoogle Scholar
Jager, E. W. H., Smela, E. and Inganas, O., Science 290 (5496), 15401545 (2000).CrossRefGoogle Scholar
So, J. H., Tayi, A. S., Guder, F. and Whitesides, G. M., Adv Funct Mater 24 (45), 71977204 (2014).Google Scholar
Yoshida, M. and Lahann, J., Acs Nano 2 (6), 11011107 (2008).CrossRefGoogle Scholar
Thompson, M. P., Chien, M. P., Ku, T. H., Rush, A. M. and Gianneschi, N. C., Nano Lett 10 (7), 26902693 (2010).CrossRefGoogle Scholar
Chen, P. Y., McKittrick, J. and Meyers, M. A., Prog Mater Sci 57 (8), 14921704 (2012).CrossRefGoogle Scholar
Loomis, J., Xu, P. and Panchapakesan, B., Nanotechnology 24 (18) (2013).CrossRefGoogle Scholar
Treloar, L. R. G., The Physics of Rubber Elasticity. (Oxford University Press, Oxford, 2005).Google Scholar
Fritzsche, J. and Kluppel, M., Journal of Physics: Condensed Matter 23 (3), 035104 (035111 pp.) (2011).Google Scholar
Ensikat, H. J., Ditsche-Kuru, P., Neinhuis, C. and Barthlott, W., Beilstein J Nanotech 2, 152161 (2011).CrossRefGoogle Scholar
Zhang, W. D., Shen, L., Phang, I. Y. and Liu, T., Macromolecules 37 (2), 256259 (2004).CrossRefGoogle Scholar
Onal, C. D., Wood, R. J. and Rus, D., 2011 Ieee International Conference on Robotics and Automation (Icra) (2011).Google Scholar
Kelby, T. S., Wang, M. and Huck, W. T. S., Adv Funct Mater 21 (4), 652657 (2011).CrossRefGoogle Scholar
Kelby, T. S. and Huck, W. T. S., Macromolecules 43 (12), 53825386 (2010).CrossRefGoogle Scholar
Felton, S. M., Tolley, M. T., Shin, B., Onal, C. D., Demaine, E. D., Rus, D. and Wood, R. J., Soft Matter 9 (32), 76887694 (2013).CrossRefGoogle Scholar
Leong, T. G., Randall, C. L., Benson, B. R., Bassik, N., Stern, G. M. and Gracias, D. H., P Natl Acad Sci USA 106 (3), 703708 (2009).CrossRefGoogle Scholar
Luchnikov, V., Sydorenko, O. and Stamm, M., Adv Mater 17 (9), 1177-+ (2005).CrossRefGoogle Scholar
Guan, J. J., He, H. Y., Hansford, D. J. and Lee, L. J., J Phys Chem B 109 (49), 2313423137 (2005).CrossRefGoogle Scholar