Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-15T06:44:42.093Z Has data issue: false hasContentIssue false

Proposal of Metastable Spin-Polarized He as a Probe of Antiferromagnetic Transition Metal Oxide Surfaces

Published online by Cambridge University Press:  21 February 2011

Anna Swan
Affiliation:
Department of Physics, Boston University, Boston, MA 02215
W. Franzen
Affiliation:
Department of Physics, Boston University, Boston, MA 02215
M. El-Batanouny
Affiliation:
Department of Physics, Boston University, Boston, MA 02215
K. M. Martini
Affiliation:
Department of Physics and Astronomy, University of Massachusetts, Amherst, MA 01003
Get access

Abstract

We suggest a new application for elastic scattering of a metastable spin-polarized atomic helium beam at thermal energy. We demonstrate how angle-resolved measurements of the Bragg peaks of scattered surviving metastable atoms can give information about the spin-ordering of an antiferromagnetic (AF) transition metal oxide surface. In this paper, we discuss the feasibility of such measurements for NiO(100) and MnO(100), based on available information about their electronic structure and the properties of spin-polarized metastable helium. On impact with a surface, the survival probability of metastables is generally very low (<10-2). There are two possible decay mechanisms for metastables, a resonance ionization followed by auger neutralization, or an auger de-excitation process. For AF surfaces which fulfill certain requirements on their electronic structure, spin-selection rules will inhibit the decay of the metastable atoms from a favourably aligned magnetic sublattice. The survival probability will then be dramatically enhanced from the chosen sublattice, and the coherently scattered surviving metastables will reflect the periodicity of that magnetic sublattice. In contrast to other methods currently applied to magnetic systems, this method does not rely on difference spectra. Consequently, reversal of spinorientation is not necessary for the observation of magnetic ordering.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Magnetic Properties of Low-Dimensional Systems, Ed: Falicov, L.M. and Moran-Lopez, J.L., (Springer, 1986).CrossRefGoogle Scholar
2. Polarized Electrons in Surface Physics, Feder, R., (World Scientific, 1986).Google Scholar
3. Polarized Electrons at Surfaces, Kirschner, J., (Springer, 1985)Google Scholar
4. Sinkovic, B. and Fadley, C.S., Phys. Rev. B31, 4554, (1985), and references therein.Google Scholar
5. De Wames, R.E., Phys. Stat. Sol. 39, 437, (1970).Google Scholar
6. Lee, J., Hanrahan, C., Arias, J., Bozso, F., Martin, R.M., and Metiu, H., Phys. Rev. Lett. 54, 1440, (1985).Google Scholar
7. de Boer, J.H. and Verwey, E.J.W., Proc. Phys. Soc. 49 (extra), 59, 59, (1937).Google Scholar
8. Esbjerg, N. and Norskov, J. K., Phys. Rev. Lett. 45, 807, (1980).Google Scholar
9. Conrad, H., Ertl, G., Kuppers, J., Sessleman, W., Woratschek, B., and Haberland, H., Surf. Sci. 117, 98, (1982).Google Scholar
10. Sesselmann, W., Conrad, H., Ertl, G., Kuppers, J. Woratschek, B., and Haberland, H., Phys. Rev. Lett. 50, 446, (1983)Google Scholar
11. Sesselmann, W., Woratschek, B., Kuppers, J., Ertl, G., and Haberland, H., Phys. Rev. B35, 1547, (1987).CrossRefGoogle Scholar
12. Onellion, M., Hart, M.W., Dunning, F.B., and Walters, G.K., Phys. Rev. Lett. 52, 380, (1984).Google Scholar
13. Fujimori, A. and Minami, F., Phys. Rev. B29, 5225, (1984).Google Scholar
14. Terakura, K., Oguchi, T., and Williams, A.R., Phys. Rev. B30, 4734, (1984).Google Scholar
15. Sawatzky, G.A. and Allen, J.W., Phys. Rev. Lett. 53, 2339, (1984).Google Scholar
16. McKay, J. M. and Henrich, V. E., Phys. Rev. Lett. 53, 2343, (1984).Google Scholar
17. Koiller, B. and Falicov, L. M., J. Phys. C, 7, 299, (1974).Google Scholar
18. Shen, Z.-X., Shih, C. K., Jepsen, O., Spicer, W. E., Lindau, I. and Allen, J. W., Phys Rev. Lett. 64, 2442, (1990).Google Scholar
19. Haberland, H. in Inelastic Ion-Surface Collisions, Ed. Tolk, N.H., Tully, J.C., Heiland, W., and White, C.W., (Academic Press, 1977) p. 14.Google Scholar
20. Lad, R.J. and Henrich, V.E., Phys. Rev. B15, 10860, (1988).Google Scholar
21. Shull, C.G., Strauser, W.A., and Wollan, E.O., Phys. Rev. 83, 333, (1951).Google Scholar
22. Swan, A., Franzen, W., El-Batanouny, M. and Martini, K.M., to be published.Google Scholar
23. Palmberg, P.W., De Wames, R.E., and Vredevoe, L.A., Phys. Rev. Lett. 21, 682, (1968).Google Scholar
24. Suzuki, T., Hirota, N., Tanaka, H. and Watanabe, H., J. Phys. Soc. Japan 30, 888, (1971).CrossRefGoogle Scholar
25. Prutton, M., J. Phys. C8, 2401, (1975),'Sinkovic, B., private communication.Google Scholar