Published online by Cambridge University Press: 01 February 2011
For MEMS technology, reliability is of major concern. The implementation of a protection and passivation layer, that may easily enhance reliability of capacitive Micromachined Ultrasonic Transducers (cMUTs) must be done without degrading device performance. In this work, realization, simulation and characterization of passivated cMUT are presented. Two materials, SiNx and Parylene C, were selected with regard to their mechanical and physical properties as well as their compatibility with device processing. Particular attention was paid on layer deposition temperature to avoid a structural modification of the top aluminium electrode and, hence, a membrane bulge. The characterization results are in good agreement with the simulations. The SiN passivation layer clearly impact device performance while Parylene C effectiveness is clearly pointed out even through ageing characterizations. If SiNx layer can be used for passivation with particular precautions, Parylene is definitely an interesting material for cMUT passivation and protection.