Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-14T19:06:22.215Z Has data issue: false hasContentIssue false

Protein Assembly Through Site-specific Interactions with Gold Nanoparticles

Published online by Cambridge University Press:  01 February 2011

Minghui Hu
Affiliation:
mhu@bnl.gov, Brookhaven National Laboratory, Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, United States, 631 344 3747, 631 344 3407
Luping Qian
Affiliation:
lqian@bnl.gov, Brookhaven National Laboratory, Biology Department, Upton, NY, 11973, United States
Raymond P Briñas
Affiliation:
rbrinas@bnl.gov, Brookhaven National Laboratory, Biology Department, Upton, NY, 11973, United States
Elena S Lymar
Affiliation:
lymare@bnl.gov, Brookhaven National Laboratory, Biology Department, Upton, NY, 11973, United States
James F Hainfeld
Affiliation:
hainfeld@bnl.gov, Brookhaven National Laboratory, Biology Department, Upton, NY, 11973, United States
Get access

Abstract

A universal method is described to design and construct protein-nanoparticle assemblies controlled by nanoparticle functionality, and placement of genetic tag into proteins. Well-defined binding complexes of nanoparticles and two proteins, the adenovirus serotype 12 knob and the mycobacterium tuberculosis 20S proteasome, were formed through site-specific binding between 6x-histidine tags in proteins and nickel-nitrilotriacetic acid functional groups on gold nanoparticles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Niemeyer, C. M., Angew. Chem. Int. Ed. 40, 4128 (2001).Google Scholar
2. Whitesides, G. M., Boncheva, M., Proc. Natl. Acad. Sci. U. S. A. 99, 4769 (2002).Google Scholar
3. Vertegel, A. A., Siegel, R. W., Dordick, J. S., Langmuir 20, 6800 (2004).Google Scholar
4. Ackerson, C. J., Sykes, M. T., Kornberg, R. D., Proc. Natl. Acad. Sci. U. S. A. 102, 13383 (2005).Google Scholar
5. Srivastava, S., Verma, A., Frankamp, B. L., Rotello, V. M., Adv. Mater. 17, 617 (2005).Google Scholar
6. Tseng, R. J., Tsai, C., Ma, L., Ouyang, J., Ozkan, C. S., Yang, Y., Nat. Nanotechnol. 1, 72 (2006).Google Scholar
7. You, C., Agasti, S. S., De, M., Knapp, M. J., Rotello, V. M., J. Am. Chem. Soc. 128, 14612 (2006).Google Scholar
8. Raymond, B. P., Hu, M., Qian, L., Lymar, E. S., Hainfeld, J. F., In preparation (2006).Google Scholar
9. Roure, O. Du, Debiemme-Chouvy, C., Malthete, J., Silberzan, P., Langmuir 19, 4138 (2003).Google Scholar
10. Bewley, M. C., Springer, K., Zhang, Y., Freimuth, P., Flanagan, J. M., Science 286, 1579 (1999).Google Scholar
11. Hu, G. Q., Lin, G., Wang, M., Dick, L., Xu, R., Nathan, C., Li, H. L., Mol. Microbiol. 59, 1417 (2006).Google Scholar
12. Hu, M., Qian, L., Raymond, B. P., Lymar, E. S., Hainfeld, J. F., submitted to Angew. Chem. Int. Ed. (2007).Google Scholar