Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T04:04:40.594Z Has data issue: false hasContentIssue false

Protein-Directed Self-Assembly of Gold Nanoparticles

Published online by Cambridge University Press:  26 February 2011

Alexey Vertegel
Affiliation:
vertege@clemson.edu, Clemson University, Bioengineering, 401 Rhodes Hall, Clemson, SC, 29634-0905, United States, 864-656-0801, 864-656-4466
Wen Shang
Affiliation:
shangw@rpi.edu, Rensselaer Polytechnic Institute, United States
Jonathan Dordick
Affiliation:
dordick@rpi.edu, Rensselaer Polytechnic Institute
Richard Siegel
Affiliation:
rwsiegel@rpi.edu, Rensselaer Polytechnnic Institute
Get access

Abstract

We have employed protein-protein interactions for controlled assembly of gold nanoparticles. Stoichiometric 1:1 protein:nanoparticle conjugates were prepared for proteins known to strongly interact with each other and these interactions were used to self-assemble nanoparticles. Mixing equivalent amounts of the antigen-nanoparticle and antibody-nanoparticle conjugates resulted in the formation of nanoparticle dimers with a yield of about 60%. Trimers (yield ∼30%) can be obtained by mixing 2:1 antigen-nanoparticle with 1:1 antibody-nanoparticle conjugates in a molar ratio of 1:2. The structures are destroyed at low pH when the antibody-antigen complex dissociates.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Faulk, W.P., Taylor, G.M., Immunochemistry, 8, 1081 (1971).Google Scholar
2 Connolly, S., Fitzmaurice, D., Adv. Mat., 11, 1202 (1999).Google Scholar
3 Li, M., Wong, K. K. W., Mann, S., Chem. Mater. 11, 23 (1999).Google Scholar
4 Niemeyer, C.M., Burger, W., Peplies, J., Angewandte Chemie Intl. Edn., 37, 2265 (1999).Google Scholar
5 Alivisatos, A.P., Johnsson, K.P., Peng, X.G., Wilson, T.E., Loweth, C.J., Bruchez, M.P., Schultz, P.G., Nature, 382, 609 (1996).Google Scholar
6 Fu, A.H., Micheel, C.M., Cha, J., Chang, H., Yang, H., Alivisatos, A.P., JACS, 126, 10832, (2004).Google Scholar
7 De Roe, C., Courtoy, P.J., Baudhuin, P., J. Histochem. Cytochem., 35, 1191 (1987).Google Scholar
8 Gole, A., Dash, C., Ramakrishnan, V., Sainkar, S.R., Mandle, A.B., Rao, M., Sastry, M., Langmuir, 17, 1674 (2001).Google Scholar
9 Gole, A., Dash, C., Soman, C., Sainkar, S.R., Rao, M., Sastry, M., Bioconj. Chem., 12, 684 (2001).Google Scholar
10 Zhao, J., O'Daly, J.P., Henkens, R.W., Stonehuerner, J., Crumbliss, A.L., Biosens. Bioelectron. 11, 493 (1996).Google Scholar
11 Crumbliss, A.L., Perine, S.C., Stonehuerner, J., Tubergen, K.R., Zhao, J., O'Daly, J.P., Biotechnol. Bioeng., 40, 483 (1992).Google Scholar
12 Stonehuerner, J.G., Zhao, J., O'Daly, J.P., Crumbliss, A.L., Henkens, R.W., Biosens. Bioelectron., 7, 421 (1992).Google Scholar
13 Bos, R., Berger, L., Nieuwenhuizen, W., Biochim. Biophys. Acta, 1117, 188 (1992).Google Scholar