Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-10T08:34:54.707Z Has data issue: false hasContentIssue false

Proteins Induced Formation of Hydrothermal Nitrogen Doped Carbons

Published online by Cambridge University Press:  31 January 2011

Niki Baccile
Affiliation:
niki.baccile@upmc.fr
Maria-Magdalena Titirici
Affiliation:
magdalena.titirici@mpikg.mpg.de, Max Planck Institute, Colloids and Interfaces, Golm, Germany
Get access

Abstract

This contribution illustrates the synthesis of nitrogen-containing hydrothermal carbon particles from a mixture of glucose, as carbon source, and different types of proteins, as nitrogen sources. Casein, ovalbumin, hemoglobin and gelatin were chosen here as model compounds. The particle size and the level of structural order could be tuned according to the protein type and the amount utilized.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Falcao, E. H. L. Wudl, F. J. Chem. Technol. Biotechnol., 82, 524531 (2007)Google Scholar
2 Tasis, D. Tagmatarchis, N. Bianco, A. Prato, M. Chem. Rev., 106, 11051136 (2006)Google Scholar
3 Shenderova, O. A. Zhirnov, V. V. Brenner, D. W. Crit. Rev. Solid State Mat. Sci., 27, 227356 (2002)Google Scholar
4 Ajayan, P. M. Chem. Rev., 99, 17871799 (1999)Google Scholar
5 Shenderova, O. A. Zhirnov, V. V. Brenner, D. W. Crit. Rev. Solid State Mat. Sci., 27, 227356 (2002)Google Scholar
6 Yu, J. Zhang, Q. Ahn, J. Yoon Rusli, S. F., Li, Y. J. Gan, B. Chew, K. J. Mater. Sci. Lett., 21, 543545 (2002)Google Scholar
7 Ajayan, P. M. Nugent, J. M. Siegel, R. W. Wei, B. Kohler-Redlich, P. Nature, 404, 243–243 (2000)Google Scholar
8 Ryoo, R. Joo, S. H. Jun, S. J. Phys. Chem. B., 103, 77437746 (1999)Google Scholar
9 Meng, Y. Gu, D. Zhang, F. Q. Shi, Y. F. Yang, H. F. Li, Z. Yu, C. Z. Tu, B. Zhao, D. Y. Angew. Chem.-Int. Edit., 44, 70537059 (2005)Google Scholar
10 Tickner, A. Geiser, K. Melissa, C. Environmental Science and Pollution Research International, 12, 115 (2002).Google Scholar
11 Baccile, N. Antonietti, M. Titirici, M.-M. ChemSusChem, ChemSusChem, 3, 246253 (2010)Google Scholar
12 Qian, H. Antonietti, M. Yu, S.-H. Adv. Funct. Mater., 17, 637643 (2007)Google Scholar
13 Titirici, M. M. Thomas, A. Yu, S. H. Muller, J. O. Antonietti, M. Chem. Mat., 19, 42054212 (2007)Google Scholar
14 Titirici, M. M. Thomas, A. Antonietti, M. Adv. Funct. Mater., 17, 10101018, (2007)Google Scholar
15 Titirici, M. M. Thomas, A. Yu, S. H. Muller, J. O. Antonietti, M. Chem. Mat., 19, 42054212 (2007)Google Scholar
16 Mauter, M. S. Elimelech, M. Environ. Sci. Technol., 42, 58435859 (2008)Google Scholar
17 Jia, Y. F. Steele, C. J. Hayward, I. P. Thomas, K. M. Carbon., 36, 12991308 (1998)Google Scholar
18 Yan, A. H. Lau, B. W. Weissman, B. S. Kulaots, I. Yang, N. Y. C. Kane, A. B. Hurt, R. H. Adv. Mater., 18, 2373 (2006)Google Scholar
19 Dillon, A. C. Jones, K. M. Bekkedahl, T. A. Kiang, C. H. Bethune, D. S. Heben, M. J. Nature., 386, 377379 (1997)Google Scholar
20 Zakhidov, A. A. Baughman, R. H. Iqbal, Z. Cui, C. X. Khayrullin, I. Dantas, S. O. Marti, I. Ralchenko, V. G. Science., 282, 897901 (1998)Google Scholar
21 titirici, M.-M., Thomas, A. Antonietti, M. J. Mater. Chem., 17, 34123418 (2007)Google Scholar
22 Shao, Y. Y. Sui, J. H. Yin, G. P. Gao, Y. Z. Appl. Catal. B-Environ., 79, 8999 (2008)Google Scholar
23 Plaza, M. G. Pevida, C. Arenillas, A. Rubiera, F. Pis, J. J. Fuel, 86, 2204 (2007)Google Scholar
24 Jia, Y. F. Xiao, B. Thomas, K. M. Langmuir., 18, 470478 (2002)Google Scholar