Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-01T00:49:26.522Z Has data issue: false hasContentIssue false

Proton Conductivity of Natural Diatomite

Published online by Cambridge University Press:  23 May 2014

Bo Wang*
Affiliation:
Research and Applications, Imerys, San Jose, CA 95134, U.S.A.
Get access

Abstract

Proton conductivity of the natural diatomite was studied by ac complex impedance technique. At room temperature, the highest proton conductivity was found to be 4.5 x 10-7 S·cm-1. By hydrating the diatomite, the proton conductivity was increased to two orders of magnitude higher. The room temperate proton conductivity of the hydrated diatomite (5.5 x 10-5 S·cm-1) was comparable to other hydrated solid proton conductors. The natural diatomite could be used as potential cost-effective proton conductor for electrochemical applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Knauth, P, Di Vona, M. L., Solid State Proton Conductors: Properties and Applications in Fuel Cells, John Wiley & Sons (2012).CrossRefGoogle Scholar
Di Noto, V., Zawodzinski, T. A., Herring, A. M., Giffin, G. A., Negro, E., Lavina, S., Int. J. Hydrog. Energy, 37, 61206131 (2012)Google Scholar
Di Noto, V., Lavina, S., Giffin, G. A., Negro, E., Scrosati, B., Electrochim. Acta, 57, 413 (2011).Google Scholar
Phair, J. W., Badwal, S. P. S., Ionics, 12, 103115 (2006).CrossRefGoogle Scholar
Chandra, S., in: Proton Conductors in Superionic Solids and Solid Electrolytes, edited by Laskar, A. and Chandra, S., Academic Press Inc. (1989).Google Scholar
Wang, B., US Patent Application, 20110195168 (2011).Google Scholar
Wang, B., Smith, T., J. Environ. Eng. Sci., 6, 469476 (2007).Google Scholar
Villegas, M. A., Fernandez Navarro, J. M., J. Mater. Sci., 23, 2464 (1988).CrossRefGoogle Scholar
Nogami, M. and Moriya, Y., J. Non-Cryst. Solids, 48, 359 (1982).CrossRefGoogle Scholar
Borrelli, N. F., McSwain, B. D., G-J Su, , Phys. Chem. Glasses, 4, 11(1963).Google Scholar
Wang, B., Szu, S., Greenblatt, M., Klein, L. C., Chem. Mater, 4, 191 (1992).CrossRefGoogle Scholar
Negro, E., Vittadello, M., Vezzù, K., Paddison, S. J., Di Noto, V., Solid State Ionics, 252, 8492 (2013).CrossRefGoogle Scholar
Bates, J. B., Dudney, N. J., Gruzalski, G. R., Zuhr, R. A., Choudhury, A., Luck, C. F. and Robertson, J. D., Solid State Ionics, 5356, 647 (1992).Google Scholar
Wang, B., Kwak, B. S., Sales, B. C., Bates, J. B., J. Non-Cryst. Solids, 183, 297 (1995).CrossRefGoogle Scholar
Wang, B., Bates, J. B., Hart, F. X., Sales, B. C., Zuhr, R. A., Robertson, J. D., J. Electrochem. Soc., 143, 3203 (1996).CrossRefGoogle Scholar
England, W. A., Cross, M. G., Hamnett, A, Wiseman, P. J. Goodenough, J. B., Solid State Ionics, 1, 231 (1980).CrossRefGoogle Scholar
Chandra, S., Singh, N., Singh, B., Solid State Comm., 57, 519 (1986).CrossRefGoogle Scholar