Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-28T10:12:06.367Z Has data issue: false hasContentIssue false

Pt Schottky contacts on Ga- and N-face surfaces of free-standing GaN

Published online by Cambridge University Press:  21 March 2011

U. Karrer
Affiliation:
Walter Schottky Institut, Technische Universität München, Am Coulombwall, 85748 Garching, Germany
C.R. Miskys
Affiliation:
Walter Schottky Institut, Technische Universität München, Am Coulombwall, 85748 Garching, Germany
O. Ambacher
Affiliation:
Walter Schottky Institut, Technische Universität München, Am Coulombwall, 85748 Garching, Germany
M. Stutzmann
Affiliation:
Walter Schottky Institut, Technische Universität München, Am Coulombwall, 85748 Garching, Germany
Get access

Abstract

Thick GaN films, grown by hydride vapor phase epitaxy (HVPE), were separated from their sapphire substrate with a laser-induced lift-off process. After cleaning and polishing, these films offer the most direct way to investigate and compare the influence of crystal polarity on the electronic properties of Ga-face and N-face surfaces, respectively. Different barrier heights for Pt Schottky diodes evaporated onto Ga- and N-face GaN are determined from the dependence of the effective barrier height versus ideality factor by I-V measurements to 1.15 eV and 0.80 eV, respectively. The charge neutrality condition at the surface is modified by the spontaneous polarization due to the polarization induced bound sheet charge. This effect has to be included in the electronegativity concept of metal induced gap states (MIGS) and can also be illustrated by different band bending of the conduction and valence band, inferred from the self-consistent solution of the Schrödinger-Poisson equation. Furthermore, temperature dependent I-V characteristics are compared to simulated behavior of Schottky diodes, exhibiting excellent agreement in forward direction, but showing deviations in the reverse current.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bernardini, F., Fiorentini, V., and Vanderbilt, D., Phys. Rev. B 56, 10024 (1997).Google Scholar
2. Bernardini, F. and Fiorentini, V., phys. stat. sol. (b) 216, 391 (1999).Google Scholar
3. Ambacher, O., Smart, J., Shealy, J.R., et al. J. Appl. Phys. 85, 3222 (1999).Google Scholar
4. Karrer, U., Ambacher, O., and Stutzmann, M., Appl. Phys. Lett. 77, 2012 (2000).Google Scholar
5. Hsu, J.W.P., Manfra, M.J., Lang, D.V., et al. Appl. Phys. Lett. 78, 1685 (2001).Google Scholar
6. Kelly, M.K., Vaudo, R.P., Phanse, V.M., Görgens, L., Ambacher, O., and Stutzmann, M., Jpn. J. Appl. Phys. 38, L217 (1999).Google Scholar
7. Miskys, C.R., Kelly, M.K., Ambacher, O., and Stutzmann, M., phys. stat. sol. (a) 176, 443 (1999).Google Scholar
8. Zoroddu, A., Bernardini, F., Ruggerone, P., and Fiorentini, V., submitted to PRB (2001).Google Scholar
9. Sze, S.M. Physics of Semiconductor Devices (John Wiley & Sons, Singapore, 1981).Google Scholar
10. Tung, R. T., Phys. Rev. B 45, 13509 (1992).Google Scholar
11. Hacke, P., Detchprohm, T., Hiramatsu, K., and Sawaki, N., Appl. Phys. Lett. 63, 2676 (1993).Google Scholar
12. Fang, Z.-Q., Look, D.C., Visconti, P.et al. Appl. Phys. Lett. 78, 2178 (2001).Google Scholar
13. Mönch, W.. Europhys. Lett. 27, 479 (1994).Google Scholar
14. Brunner, D., Angerer, H., Bustarret, E., et al. J. Appl. Phys. 82, 5090 (1997).Google Scholar