Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-07T12:39:48.210Z Has data issue: false hasContentIssue false

Pulsed 35 Ghz Gyrotron with Overmoded Applicator for Sintering Experiments

Published online by Cambridge University Press:  10 February 2011

A. W. Fliflet
Affiliation:
Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375, U.S.A., flifletC@ppd.nrl.navy.mil
R. P. Fischer
Affiliation:
Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375, U.S.A., flifletC@ppd.nrl.navy.mil
A. K. Kinkead
Affiliation:
Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375, U.S.A., flifletC@ppd.nrl.navy.mil
R. W. Bruce
Affiliation:
Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375, U.S.A., flifletC@ppd.nrl.navy.mil
Get access

Abstract

The microwave sintering of nanocrystalline alumina compacts is currently under investigation at NRL. This paper will discuss an overmoded microwave furnace based on a 35 GHz pulsed gyrotron which is currently being set up to extend ongoing microwave sintering experiments at 2.45 GHz to 35 GHz. The gyrotron operates at 70 kV and currents up to 10 A. It is driven by a hard tube, variable pulse length (1–15 μs) modulator at repetition rates up to 1 kHz. The gyrotron can produce peak powers up to 100 kW at an efficiency of 20%, and average powers up to 200 W. The gyrotron output is transported via pressurized Ka-Band waveguide to an overmoded resonator containing the workpiece. In initial experiments, the resonator will consist of a piece of WR-284 waveguide. The operation of the system in preliminary sintering experiments is described.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sutton, W. H., “Microwave Processing of Ceramic Materials,” Ceramic Bulletin 68, 376 (1989)Google Scholar
2. Katz, J. D., Blake, R. D., Petrovic, J. J., and Sheinberg, H., “Microwave sintering of boron carbide,” Mat. Res. Soc. Sym. Proc. 124, 219 (1988).Google Scholar
3. Blake, R. D. and Katz, J. D., “Microwave sintering of large ceramic bodies,” Ceramic Transactions 36, 459 (1993).Google Scholar
4. Janney, M. A., Kimrey, H. D., and Kiggans, J. O., “Microwave processing of ceramics: guidelines used at the Oak Ridge National Laboratory,” Mat. Res. Soc. Sym. Proc. 269, 173 (1992).Google Scholar
5. Janney, M. A. and Kimrey, H. D., “Microwave sintering of alumina at 28 GHz,” Ceramic Powder Science II, p. 919, Messing, G. L., Fuller, E. R., and Hausner, H., Editors, American Ceramic Society, Westville, Ohio (1988).Google Scholar
6. Tiegs, T. N., Kiggans, J. O., and Kimrey, H. D., “Microwave sintering of silicon nitride,” Mat. Res. Soc. Sym. Proc. 189, 267 (1990).Google Scholar
7. Eastman, J. A., Sickafus, K. E., Katz, J. D., Boeke, S. G., Blake, R. D., Evans, C. R., Schwarz, R. B. and Liao, Y. X., “Microwave sintering of nanocrystalline TiU2 ”, Mat. Res. Soc. Sym. Proc. 189, 273 (1990).Google Scholar
8. Kumar, S. N., Pant, A., Sood, R. R., Ng-Yelim, J. and Holt, R. T., “Production of ultra-fine silicon carbide by fast firing in microwave and resistance furnaces”, Ceramic Transactions,21, pp. 395402, (1991).Google Scholar
9. Vollath, D., Varma, R. and Sickafus, K. E., “Synthesis of nanocrystalline powders for oxide ceramics by microwave plasma pyrolysis”, Mat. Res. Soc. Sym. Proc. 269, 379 (1992).Google Scholar
10. Vollath, D., “Some activities of microwave processing of ceramics in Germany”, Ceramic Transactions 36, pp. 147156 (1993).Google Scholar
11. Freim, J., McKittrick, J., Katz, J. and Sickafus, K., “Phase transformation and densification behavior of microwave sintered γ-A12O3 ”, Mat. Res. Soc. Sym. Proc. 347, 525 (1994).Google Scholar
12. Zhang, J., Yang, Y., Cao, L., Chen, S., Shong, X., and Xia, F., “Microwave sintering on nanocrystalline ZrO2 powders”, Mat. Res. Soc. Sym. Proc. 347, 591 (1994).Google Scholar
13. Kurihara, L. K., Chow, G. M., and Schoen, P. E., “Low temperature processing of nanoscale ceramic nitride particles using molecular precursors,” Patent Disclosure, U.S. Navy Case 82,737 (1995), application pending.Google Scholar