Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-15T07:09:08.260Z Has data issue: false hasContentIssue false

Pulsed-Laser Annealing of Silicon Films

Published online by Cambridge University Press:  28 February 2011

T. Sameshima*
Affiliation:
Sony Research Center, 174 Fujitsuka-cho, Hodogaya-ku, Yokohama 240, Japan.
Get access

Abstract

Phase transition between crystalline and amorphous states was studied through 30ns-pulsed XeCl laser induced melting of silicon films. Crystallization occurs through interface controlled growth for laser energy above surface melting threshold. Grain size is smaller than lOOnm because of short melt duration (<80ns). Amorphization is observed in silicon films thinner than 40nm when the silicon films are completely melted then solidified homogeneously. The amorphized films have a large defect density (∼1020cm-3eV-1), which is remarkably reduced by hydrogen plasma treatment for 1 minute. This paper also discusses the application to fabrication of thin film transistors with a high carrier mobility (>100cm2/Vs) at a low temperature of 250°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Wood, R.F., Lowndes, D.H., and Narayan, J., Appl. Phys. Lett. 44, 770(1984).Google Scholar
[2] Thompson, M.O., Galvin, G.J., Mayer, J.W., Peercy, P.S., Poate, J.M., Jacobson, D.C., Cullis, A.G., and Chew, N.G., Phys. Rev. Lett. 52, 2360(1984).Google Scholar
[3] Stiffler, S.R., Thompson, M.O., and Peercy, P.S., Mater. Res. Soc. Symp. Proc. 100, 505 (1988).Google Scholar
[4] Liu, P.L., Yen, R., Bloembergen, N., and Hodgson, R.T., Appl. Phys. Lett. 34, 864 (1979).Google Scholar
[5] Tsu, R., Hodgson, R.T., Tan, T.Y., and Baglin, J.E, Phys. Rev. Lett. 42, 1356 (1979).Google Scholar
[6] Cullis, A.G., Webber, H.C., Chew, N.G., Poate, J.M., and Baeri, P., Phys. Rev. Lett. 49, 219 (1982).Google Scholar
[7] Campisano, S.U., Webber, D.C., Poate, J.M., Cullis, A.G., and Chew, N.G., Appl. Phys. Lett. 46, 846(1985).Google Scholar
[8] Thompson, M.O., Mayer, J.W., Cullis, A.G., Webber, H.C., Chew, N.G., Poate, J.M., and Jacobson, D.C., Phys. Rev. Lett. 50, 896 (1983).Google Scholar
[9] Sameshima, T. and Usui, S., Mat. Res. Soc. Symp. Proc. 71 435 (1986).Google Scholar
[10] Sameshima, T., Hara, M. and Usui, S., Jpn. J. Appl. Phys. 28 1789 (1989).Google Scholar
[11] Sameshima, T., Hara, M., and Usui, S., Jpn. J. Appl. Phys. Lett. 29. 548(1990).Google Scholar
[12] Sameshima, T., Hara, M., Sano, N., and Usui, S., Jpn. J. Appl. Phys. Lett. 29 1363 (1990).Google Scholar
[13] Sameshima, T. and Usui, S., J. Appl. Phys. 70, 1281 (1991).Google Scholar
[14] Sameshima, T. and Usui, S., Appl. Phys. Lett. 59, 2724 (1991).Google Scholar
[15] Sameshima, T. and Usui, S., Proc in Mat. Res. Symp. 235, 81 (1992).Google Scholar
[16] Iqubal, Z., and Veprek, S., J. Phys. C15, 377(1982).Google Scholar
[17] Mott, N.F., Philos. Mag. 19, 835 (1969) 835.Google Scholar
[18] Murase, K., Takedaand, A. Mizushima, T., Jpn. J. Appl. Phys. 21, 561(1982).Google Scholar
[19] Tauc, J., Crigrovici, R., and Vancu, A., Phys. Status Solidi. 15, 627 (1966).Google Scholar
[20] Cody, G.D., Tiedje, T, Abeles, B., Brooks, B., Goldstein, Y., Phys. Rev. Lett., 47, 1480 (1981).Google Scholar
[21] Iverson, R.B. and Reif, R., J. Appl. Phys. 57, 5169 (1985).Google Scholar
[22] Carslaw, H.S. and Jager, J.C., Conduction of Heat in Solids (Oxford University Oxford, (1959), Chap.2.Google Scholar
[23] Wood, R.F. and Giles, G.E., Phys. Rev. B23, 2923 (1981).Google Scholar
[24] Stiffler, S.R., Thompson, M.O., and Peercy, P.S., Phys. Rev. Lett. 60, 2519 (1988).Google Scholar
[25] Chelikowsky, J.R. and Cohen, M.L., Phys. Rev. B 10, 5095 (1974).Google Scholar