Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-10T09:07:10.406Z Has data issue: false hasContentIssue false

Pyrolysis Studies and Deposition of Sb Films Using the Novel Omvpe Source (I-Pr)2 SbH

Published online by Cambridge University Press:  22 February 2011

Robert W. Gedridge Jr
Affiliation:
Chemistry Division, Research Department, Naval Air Warfare Center Weapons Division, China Lake, CA 93555
Kenneth E. Lee
Affiliation:
Chemistry Division, Research Department, Naval Air Warfare Center Weapons Division, China Lake, CA 93555
Charlotte K. Lowe-Ma
Affiliation:
Chemistry Division, Research Department, Naval Air Warfare Center Weapons Division, China Lake, CA 93555
Get access

Abstract

The novel antimony source compound di-isopropylantimony hydride, (i-Pr)2 was synthesized and evaluated for use as a volatile Sb-source compound for low temperature growth of Sb-containing semiconductor materials. (i-Pr)2SbH was pyrolyzed in a horizontal atmospheric pressure organometallic vapor phase epitaxy (OMVPE) reactor using Arand H2 as carrier gases. The gaseous exhaust products were analyzed by a residual gas analyzer. Complete pyrolysis of (i-Pr)2SbH in our OMVPE reactor occursaround 300°C and 350°C in Ar and H2, respectively. A comparison between the pyrolysis temperatures and pyrolysis byproducts with respect to a proposed decomposition mechanism of (i-Pr)2SbH is presented. Sb films were grown on Si(100) andSi(111) as low as 200° C. The Sb films were analyzed by Auger and X-ray diffraction. These polycrystalline Sb films were free of detectable carbon by AES. X-ray diffraction data indicated that these Sb films were highly oriented in the [000L] direction.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fowler, A. M. Laser Focus World March (1992), p. 123.Google Scholar
2. (a) Nataf, G., Verie, C., J. Cryst. Growth 55, 87 (1981).Google Scholar
(b) Chiang, P.K., Bediar, S.M., Appl. Phys. Lett. 46, 383 (1985).Google Scholar
(c) Biefeld, R.M., J. Cryst. Growth 75, 255 (1986).Google Scholar
3. Humphreys, T. P., Chiang, P.K., Bediar, S. M., Parikh, N. R., Appl. Phys. Lett. 53, 142 (1988).Google Scholar
4. Ma, K.Y, Fang, Z. M., Jaw, D. H., Cohen, R.M., Stringfellow, G.B., Kosar, W.P., Brown, D.W., Appl. Phys. Lett. 55, 2420 (1989).Google Scholar
5. Ma, K.Y, Fang, Z. M., Cohen, R. M., Stringfellow, G. B., J. Electron. Mater. 21, 143, (1992).Google Scholar
6. Larsen, C. A., Gedridge, R. Jr, Stringfellow, G. B., Chem. Mater. 3, 96, (1991).Google Scholar
7. (a) Chen, C. H., Fang, Z. M., Stringfellow, G. B., Gedridge, R. W. Jr,., Appl. Phys. Lett. 58, 2532, (1991).Google Scholar
(b) Stauf, G. T., Gaskill, D. K., Bottka, N., Gedridge, R. W. Jr, Appl. Phys. Lett. 58, 1311,(1991).Google Scholar
8. Li, S. H., Larsen, C. A., Stringfellow, G. B., Gedridge, R. W. Jr, J. Electron. Mater. 20, 457, (1991).Google Scholar
9. (a) Gedridge, R. W. Jr, Organometallics 11 967, (1992).Google Scholar
(b) Cao, D. S., Chen, C. H., Hill, C. W., Li, S. H., Stringfellow, G. B., Gordon, D. C., Brown, D. W., Vaartstra, B. A., J.Electron. Mater. 21, 583, (1992).Google Scholar
10. Stauf, G. T., Gaskill, D. K., Bottka, N., Gedridge, R. W. Jr, Mat. Res. Soc. Symp. Proc. 216, 239, (1991).Google Scholar
11. Sugiura, O., Kameda, H., Shiina, K., Matsumura, M., J. Electron. Mater. 17, 11 (1988).Google Scholar
12. (a) Devyatykh, G.G., Kedyarkin, V.M., Zonn, A.D., Russ. J. Inorg. Chem. 14, 1055 (1969).Google Scholar
(b) Burg, A.B., Grant, L.R., J. Am. Chem. Soc. 81, 1 (1959).Google Scholar
13. Hendershot, D. G., Pazik, J. C., Berry, A. D., Chem. Mater. 4, 833, (1992).Google Scholar
14. Gedridge, R. W. Jr, (to be published).Google Scholar
15. Hill, C., Tao, M., Shih, J., Gedridge, R. W. Jr, Stringfellow, G. B. (to be published).Google Scholar
16. International Centre for Diffraction Data (1991), Swarthmore, Pa. Entry #35–732.Google Scholar
17. (a) Wyckoff, R. W. G., Crystal Structures, 2nd ed. (Interscience, New York, 1963), pp. 32.Google Scholar
(b) Smith, D. K., Nichols, M. C., Zolinsky, M. E., Powd 10, A Fortran IV Program for Calculating X-ray Powder Diffraction Patterns-Version 10, (Pennsylvannia State Un iversity, University Park, PA, 1982), adapted by Scintag Inc., for use with Scintag software/graphics.Google Scholar