Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T13:42:17.642Z Has data issue: false hasContentIssue false

Quantification Of Pyrrhotiye O2 Consumption By Using Pyrite Oxidation Kinetic Data

Published online by Cambridge University Press:  30 June 2014

I. Rojo*
Affiliation:
Fundació CTM Centre Tecnològic, Plaça de la Ciència 2, 08243 Manresa (E)
F. Clarens
Affiliation:
Fundació CTM Centre Tecnològic, Plaça de la Ciència 2, 08243 Manresa (E)
J. de Pablo
Affiliation:
Fundació CTM Centre Tecnològic, Plaça de la Ciència 2, 08243 Manresa (E)
C Domènech
Affiliation:
Amphos 21 Consulting, S.L. (E)
L. Duro
Affiliation:
Amphos 21 Consulting, S.L. (E)
M. Grivé
Affiliation:
Amphos 21 Consulting, S.L. (E)
D. Arcos
Affiliation:
Amphos 21 Consulting, S.L. (E)
*
*Corresponding author: isabel.rojo@ctm.com.es
Get access

Abstract

Experiments on the dissolution kinetics of natural pyrrhotite (FeS1-x-) and pyrite (FeS2) under imposed redox conditions to evaluate the oxygen uptake capacity of both minerals were carried out at 25°C and 1 bar. Experimental data indicate that in both cases, Fe(II) released from dissolution of these Fe-bearing sulphides is kinetically oxidized to Fe(III) to precipitate as Fe(III)-oxyhydroxides. While the system is pH controlled by the extent of the sulphide oxidation, Eh is controlled by the redox pair Fe2+/Fe(III)-oxyhydroxides. Pyrrhotite dissolution is faster than that of pyrite but generates less acidity. Consequently, the achieved redox value is more reducing. Experimental data show that the oxidation rates of both minerals (in mol·g-1·s-1) are equivalent under the studied conditions. This fact gives a new opportunity to quantify the reductive buffering capacity of pyrrhotite, for which no kinetic rate law has been still established.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Belzile, N., Chen, Y.W., Cai, M.F., Li, Y. (2004) A review on pyrrhotite oxidation. Journal of geochemical exploration 84, 6576.CrossRefGoogle Scholar
Feng, D., van Deventer, J.S.J. (2002) Leaching behaviour of sulphidesin ammoniacalthiosulphate systems. Hydrometallurgy 63, 189200.10.1016/S0304-386X(01)00225-0CrossRefGoogle Scholar
Gibbs, C. (1976). Characterization and application of ferrozine iron reagent as ferrous iron indicator. Anal. Chem. 48, 11971200.10.1021/ac50002a034CrossRefGoogle Scholar
Janzen, M.P., Nicholson, R.V., Scharer, J.M. (2000) Pyrrhotite reaction kinetics: Reaction rates for oxidation by oxygen, ferric iron, and for nonoxidative dissolution. GeochimicaetCosmochimicaActa, 64(9) 15111522.Google Scholar
Murphy, R.;Strongin, , , D.R. (2009) Surface reactivity of pyrite and related sulfides. Surface Science Reports 64, 145.CrossRefGoogle Scholar
Nicholson, R.V. (1994) Iron-sulfide oxidation mechanisms: laboratory studies. In Jambor, J.L., Blowes, D.W. (eds). Short course handbook on environmental geochemistry of sulfide mine wastes 22, Mineralogical Association of Canada, 163183.Google Scholar
Parkhurst, D.L.; Appelo, C.A.J. (1999) User’s guide to PHREEQC ((v. 2.17.5))-A computer program for speciation, batch-reaction, one-dimensional transport and inverse geochemical calculations. Washington D.C., USGS, Water resources investigations report 99-4259, 326p.Google Scholar
Scott, M.J., Morgan, J.J. (1990) Energetic and conservative properties of redox systems. In (eds) American Chemical Society, 368–378.CrossRefGoogle Scholar
Singer, P.C. and Stumm, W. (1970) Acidic mine drainage: the rate determining step. Science 167, 11211123.CrossRefGoogle ScholarPubMed
Wang, H. (2008) A review on process-related characteristics of pyrrhotite. Mineral Processing and Extractive Metallurgy Reviews, 29, 141.CrossRefGoogle Scholar
Williamson, M.A., Rimstidt, J.D. (1994) The kinetics and electrochemical rate-determining step of aqueous pyrite oxidation. Geochimica et CosmochimicaActa 58(4), 54435454.CrossRefGoogle Scholar