No CrossRef data available.
Published online by Cambridge University Press: 30 June 2014
Experiments on the dissolution kinetics of natural pyrrhotite (FeS1-x-) and pyrite (FeS2) under imposed redox conditions to evaluate the oxygen uptake capacity of both minerals were carried out at 25°C and 1 bar. Experimental data indicate that in both cases, Fe(II) released from dissolution of these Fe-bearing sulphides is kinetically oxidized to Fe(III) to precipitate as Fe(III)-oxyhydroxides. While the system is pH controlled by the extent of the sulphide oxidation, Eh is controlled by the redox pair Fe2+/Fe(III)-oxyhydroxides. Pyrrhotite dissolution is faster than that of pyrite but generates less acidity. Consequently, the achieved redox value is more reducing. Experimental data show that the oxidation rates of both minerals (in mol·g-1·s-1) are equivalent under the studied conditions. This fact gives a new opportunity to quantify the reductive buffering capacity of pyrrhotite, for which no kinetic rate law has been still established.