Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-30T21:20:14.206Z Has data issue: false hasContentIssue false

Quantum Dot-Single Wall Carbon Nanotube Complexes for Polymeric Photovoltaics

Published online by Cambridge University Press:  01 February 2011

Brian J. Landi
Affiliation:
NanoPower Research Laboratories, Rochester Institute of Technology, Rochester, NY 14623, USA
Stephanie L. Castro
Affiliation:
Ohio Aerospace Institute, Brookpark, OH 44142, USA
Chris M. Evans
Affiliation:
NanoPower Research Laboratories, Rochester Institute of Technology, Rochester, NY 14623, USA
Herbert J. Ruf
Affiliation:
NanoPower Research Laboratories, Rochester Institute of Technology, Rochester, NY 14623, USA
Sheila G. Bailey
Affiliation:
NASA Glenn Research Center, Cleveland, OH 44135, USA
Ryne P. Raffaelle
Affiliation:
NanoPower Research Laboratories, Rochester Institute of Technology, Rochester, NY 14623, USA
Get access

Abstract

The ability to dissociate the photo-generated excitons and transport the resulting charge carriers are the major impediments in improving the efficiency of polymeric solar cells. In order to simultaneously address both of these issues, we have investigated the use of quantum dotsingle wall carbon nanotube (QD-SWNT) complexes as a suitable nanomaterial dopant in these devices. The formation of CdSe-SWNT complexes occurred through covalent attachment of carboxylic acid-functionalized SWNTs with CdSe-aminoethanethiol (AET) quantum dots. An additional synthetic approach was evaluated using both electrostatic and covalent attachment schemes for CuInS2-mercaptoacetic acid (MA) quantum dots and amine terminated SWNTs. The efficacy of each approach is discussed, including the necessary transmission electron microscopy (TEM) and optical absorption spectroscopy data to probe the interactions between nanomaterials. The potential effects of charge transfer between components may have important implications in the efficiency of these materials for polymeric photovoltaic devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dyakonov, V., Thin Solid Films 451–452, 493497, (2004).Google Scholar
2. Brabec, C. J., Shaheen, S. E., Winder, C., Sariciftci, N. S. and Denk, P., Appl. Phys. Lett. 80, 12881290, (2002).Google Scholar
3. Kymakis, E., Alexandrou, I. and Amaratunga, G. A. J., J. Appl. Phys. 93, 1764, (2003).Google Scholar
4. Brus, L. E., J. Chem. Phys. 79, 55665571, (1983).Google Scholar
5. Kucur, E., Riegler, J., Urban, G. A. and Nann, T., J. Chem. Phys. 119, 23332337, (2003).Google Scholar
6. Hunger, R., Pettenkofer, C. and Scheer, R., Surf. Science 477, 7693, (2001).Google Scholar
7. Landi, B. J., Raffaelle, R. P., Castro, S. L. and Bailey, S. G., Prog. Photovot: Res. Appl., in press, (2004).Google Scholar
8. Banerjee, S. and Wong, S. S., Nano Lett. 2, 195200, (2002).Google Scholar
9. Banerjee, S. and Wong, S. S., J. Am. Chem. Soc. 125, 10342, (2003).Google Scholar
10. Haremza, J. M., Hahn, M. A., Krauss, T. D., Chen, S. and Calcines, J., Nano Lett. 2, 12531258, (2002).Google Scholar
11. Landi, B. J., Ruf, H. J., Worman, J. J. and Raffaelle, R. P., J. Phys. Chem. B 108, 1708917095, (2004).Google Scholar
12. Landi, B. J., Castro, S. L., Ruf, H. J., Evans, C. M., Bailey, S. G. and Raffaelle, R. P., Sol. Energ. Mat. & Sol. Cells, in press, (2004).Google Scholar
13. Castro, S. L., Bailey, S. G., Raffaelle, R. P., Banger, K. K. and Hepp, A. F., J. Phys. Chem. B 108, 1242912435, (2004).Google Scholar
14. Castro, S. L., Landi, B. J., Raffaelle, R. P. and Bailey, S. G. “Colloidal CuInS2 Nanoparticles for Polymeric Solar Cells.” In ‘2nd International Energy Conversion Engineering Conference’. (Providence, RI, 2004).Google Scholar