Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-28T14:24:30.127Z Has data issue: false hasContentIssue false

A Quantum Mechanical Investigation of Positively Charged Defects In SiO2 Thin Film Devices

Published online by Cambridge University Press:  10 February 2011

Antonio M. Ferreira
Affiliation:
US Air Force Phillips Laboratory, Space Mission Technologies Division, 3550 Aberdeen Avenue SE, Kirtland AFB, NM 87117-5776
Shashi P. Kama
Affiliation:
US Air Force Phillips Laboratory, Space Mission Technologies Division, 3550 Aberdeen Avenue SE, Kirtland AFB, NM 87117-5776
Charles P. Brothers
Affiliation:
US Air Force Phillips Laboratory, Space Mission Technologies Division, 3550 Aberdeen Avenue SE, Kirtland AFB, NM 87117-5776
Robert D. Pugh
Affiliation:
US Air Force Phillips Laboratory, Space Mission Technologies Division, 3550 Aberdeen Avenue SE, Kirtland AFB, NM 87117-5776
Babu B. K. Singaraju
Affiliation:
US Air Force Phillips Laboratory, Space Mission Technologies Division, 3550 Aberdeen Avenue SE, Kirtland AFB, NM 87117-5776
Karel Vanheusden
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-1349
William L. Warren
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-1349
Roderick A. B. Devine
Affiliation:
France Télécom/CNET, B. P. 98, 38243 Meylan Cedex, FRANCE
Get access

Abstract

Ab initio Hartree-Fock and second-order Möller-Plesset theory calculations have been performed to investigate the stability of triply-coordinated 0+ centers in the Si-O-Si network of amorphous SiO2. The calculations reveal that the H+ ion binds with a bridging O center to form a very stable (De > 6 eV) trivalent O complex. Capture of an electron by the positively charged protonated complex, however, is predicted to immediately lead to the dissociation of the O-H bond. A relatively weaker, but stable bond is also formed between the bridging O atom and a +SiH3 ion.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Ma, T. P. and Dressendorfer, P. V., Ionizing Radiation Effects in MOS Devices and Cicuits. (Wiley, NY, 1989).Google Scholar
2 Stahlbush, R. E., Edwards, A. H., Griscom, D. L., and Mrstik, B. J., J. Appl. Phys. 73, 658 (1993).Google Scholar
3 Vanheusden, K. and Stesmans, A., Appl. Phys. Lett. 62, 40 (1994).Google Scholar
4 Afanas'ev, V. V., de Nijs, J. M. M., Balk, P. B., and Stesmans, A., J. Appl. Phys. 78, 6481 (1995).Google Scholar
5 Warren, W. L., Vanheusden, K., Schwank, J. R., Fleetwood, D. M., Winokur, P. S., and Devine, R. A. B., Appl. Phys. Lett. 68, 2993 (1996).Google Scholar
6 O'Reilly, E. P. and Robertson, J., Phys. Rev. B 27, 3780 (1983).Google Scholar
7 Edwards, A. H. and Germann, G., Nucl. Instr. Meth. Phys. Res. B 32, 238 (1988).Google Scholar
8 Edwards, A. H., Pickard, J. A., and Stahlbush, R. E., J. Non-Cryst. Solids 179, 148 (1994).Google Scholar
9 Edwards, A. H., J. Non-Cryst. Solids 187, 232 (1995).Google Scholar
10 Carmichael, I., Chem. Phys. 116, 351 (1987).Google Scholar
11 Duning, T. H. Jr. and Hay, P. J., in Modern Theoretical Chemistry. V. 3: Methods of Electronic Structure Theory. Edited by Schaefer, H. F. (Plenum Press, NY, 1976), p. 1.Google Scholar
12 Dupuis, M., Farazdel, A., Kama, S. P., and Maluendes, S., in Modern Techniques in Computational Chemistry. Edited by Clementi, E. (ESCOM Science publishing, Leiden, 1990), p. 277.Google Scholar
13 Helms, C. R. and Poindexter, E. H., Rep. Prog. Phys. 57, 791 (1994).Google Scholar
14 McLean, F.B., IEEE Trans. Nucl. Sei. NS-27, 1651 (1980).Google Scholar
15 Winokur, P.S., Boesch, H.E. Jr., McGarrity, J.M. and McLean, F.B., IEEE Trans. Nucl. Sei. NS-24, 2113 (1977).Google Scholar
16 Griscom, D.L., J. Appl. Phys. 58, 2524 (1985).Google Scholar