Hostname: page-component-5f745c7db-j9pcf Total loading time: 0 Render date: 2025-01-06T15:15:15.471Z Has data issue: true hasContentIssue false

Quantum-Confined Stark Effect and Polarization Field in Single Quantum Well InGaN/GaN LEDs

Published online by Cambridge University Press:  01 February 2011

Robert Kaplar
Affiliation:
rjkapla@sandia.gov, Sandia National Labs, PO Box 5800, MS 0601, Albuquerque, NM, 87185, United States
Steven Kurtz
Affiliation:
srkurtz@sandia.gov, Sandia National Labs, United States
Daniel Koleske
Affiliation:
ddkoles@sandia.gov, Sandia National Labs, United States
Get access

Abstract

Based on the wurtzite crystal structure, large (MV/cm) polarization-induced electric fields are known to exist in InGaN single quantum wells (SQWs) grown perpendicular to the GaN c-axis, and these fields may impact optical device performance due to the quantum-confined Stark effect (QCSE). In general, the QCSE has experimentally been found to be smaller than the theoretical value expected for a coherently strained InGaN QW, and subsequently the InGaN/GaN QW polarization field is often under-estimated as well. In this study, we measure the QCSE in modulation-doped, InGaN/GaN SQW LEDs. The well-behaved capacitance-voltage (majority-carrier) characteristics of these devices allow us to unambiguously determine the applied field with bias. With this analysis, we de-couple the QCSE from the QW polarization field and show that although the applied field approaches the opposing QW polarization field theoretical value (i.e., flatband), the QCSE remains too small. We propose a localized-hole picture of the InGaN QW which explains our optical and electrical measurements.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Takeuchi, T., Wetzel, C., Yamaguchi, S., Sakai, H., Amano, H., Akasaki, I., Kaneko, Y., Nakagawa, S., Yamaoka, Y., and Yamada, Y., Appl. Phys. Lett. 73, 1691 (1998).CrossRefGoogle Scholar
2. Jho, D., Yahng, J. S., Oh, E., and Kim, D. S., Phys. Rev. B 66, 035334 (2002).CrossRefGoogle Scholar
3. Lai, C. Y., Hsu, T. M., Chang, W. H., Tseng, K. U., Lee, C. M., Chuo, C. C., and Chyi, J. I., J. Appl. Phys. 91, 531 (2002).CrossRefGoogle Scholar
4. Brown, I. H., Pope, I. A., Smowton, P. M., Blood, P., Thomson, J. D., Chow, W. W., Bour, D. P., and Kneissl, M., Appl. Phys. Lett. 86, 131108 (2005).CrossRefGoogle Scholar
5. Renner, F., Kiesel, P., Döhler, G. H., Kneissl, M., Van de Walle, C. G., and Johnson, N. M., Appl. Phys. Lett. 81, 490 (2002).CrossRefGoogle Scholar
6. Franssen, G., Perlin, P., and Suski, T., Phys. Rev. B. 69, 045310 (2004).CrossRefGoogle Scholar
7. Kaplar, R. J., Kurtz, S. R., Koleske, D. D., and Fischer, A. J., J. Appl. Phys. 95, 4905 (2004).CrossRefGoogle Scholar
8. Lee, S. R., West, A. M., Allerman, A. A., Waldrip, K. E., Follstaedt, D. M., Provencio, P. P., Koleske, D. D., and Abernathy, C. R., Appl. Phys. Lett. 86, 241904 (2005).CrossRefGoogle Scholar
9. Chichibu, S., Azuhata, T., Sota, T., and Nakamura, S., Appl. Phys. Lett. 70, 2822 (1997).CrossRefGoogle Scholar
10. Chichibu, S., Wada, K., and Nakamura, S., Appl. Phys. Lett. 71, 2346 (1997).Google Scholar
11. Martin, R. W., Middleton, P. G., O'Donnell, K. P., and Van der Stricht, W., Appl. Phys. Lett. 74, 263 (1999).CrossRefGoogle Scholar
12. Gelbard, F. and Malloy, K. J., J. Comput. Phys. 172, 19 (2001).CrossRefGoogle Scholar
13. Wu, J., Walukiewicz, W., Yu, K. M., Ager, J. W. III, Haller, E. E., Lu, H., and Schaff, W. J., Appl. Phys. Lett. 80, 4741 (2002).CrossRefGoogle Scholar
14. Suzuki, M. and Uenoyama, T., Solid-State Electron. 41, 271 (1997).CrossRefGoogle Scholar
15. Wei, S. H. and Zunger, A., Appl. Phys. Lett. 69, 2719 (1996).Google Scholar
16. Manz, C., Kunzer, M., Obloh, H., Ramakrishnan, A., and Kaufmann, U., Appl. Phys. Lett. 74, 3993 (1999).CrossRefGoogle Scholar
17. Fiorentini, V., Bernandini, F., and Ambacher, O., Appl. Phys. Lett. 80, 1204 (2002).Google Scholar
18. Pollack, F. H. and Shen, H., Mater. Sci. Eng. R 10, 275 (1993).Google Scholar
19. Shan, W., Schmidt, T. J., Yang, X. H., Hwang, S. J., Song, J. J., and Goldenberg, B., Appl. Phys. Lett. 66, 985 (1995).CrossRefGoogle Scholar
20. Kaplar, R. J., Kurtz, S. R., and Koleske, D. D., Appl. Phys. Lett. 85, 5436 (2004).CrossRefGoogle Scholar
21. Bell, A., Christen, J., Bertram, F., Ponce, F. A., Marui, H., and Tanaka, S., Appl. Phys. Lett. 84, 58 (2004).CrossRefGoogle Scholar