Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-15T11:40:51.005Z Has data issue: false hasContentIssue false

Radiation Effects in Murataite Ceramics

Published online by Cambridge University Press:  01 February 2011

J. Lian
Affiliation:
Dept. of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109, USA
L. M. Wang
Affiliation:
Dept. of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109, USA
R. C. Ewing
Affiliation:
Dept. of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109, USA
S. V. Yudintsev
Affiliation:
Institute of Geology of Ore Deposits RAS, Staromonetnii per. 35, Moscow 109017, RUSSIA
S. V. Stefanovsky
Affiliation:
SIA Radon, 7th Rostovskii per. 2/14, Moscow 119121, RUSSIA
Get access

Abstract

Synthetic murataite, an isometric, derivative of the fluorite-structure, has been proposed as a potential host phase for the immobilization of rare earth elements (REE) and actinides. A 1 MeV Kr+ ion irradiation has been performed on synthetic murataite ceramics in the system Ca-Ti-U-Mn-Al-Zr-Ce-O for different structural multiples of the fluorite unit cell. The temperature dependence of the amorphization dose has been determined. A higher critical temperature was obtained for the disordered murataite as compared to that of murataite superstructures, suggesting that murataite becomes more “resistant” to ion beam-induced damage with increasing degrees of structural disorder.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ryerson, F. J., J. Amer. Ceram. Soc. 67, 75 (1984).Google Scholar
2. Ereit, T. S. and Hawthorne, F. C., Canadian Mineralogist 33, 1223 (1995).Google Scholar
4. Laverov, N. P., Yudintsev, S. V., Omelianenko, B. I., Nikonov, B. S., and Stefanovsky, S. V., Geol. Ore Deposits, 41, 85 (1999).Google Scholar
5. Stefanovsky, S.V., Yudintsev, S.V., Nikonov, B.S., Omelianenko, B.I., and Ptashkin, A.G., Mat. Res. Soc. Symp. Proc. 556, 121 (1999).Google Scholar
6. Karimova, O. V., Organová, N. L., and Balakirev, V. G., Crystallography Reports 47, 957 (2002).Google Scholar
7. Sobolev, I. A., Stefanovsky, S. V., Ioudintsev, S. V., Nikonov, B. S., Omelianenko, B. I., and Mokhov, A.V., Mat. Res. Soc. Symp. Proc. 465, 363 (1997).Google Scholar
8. Ziegler, J. F., Biersack, J. P., and Littmark, U., The Stopping Range of Ions in Solids (Pergamon Press. New York, 1985), 321p.Google Scholar
9. Lian, J., Chen, J., Wang, L. M., Ewing, R. C., Farmer, J. M., Boatner, L. A., and Helean, K., Phys. Rev. B. submitted.Google Scholar
10. Wang, S. X., Begg, B. D., Wang, L. M., Ewing, R. C., Weber, W. J., and Kutty, K. V. G., J. Mat. Res. 14, 4470 (1999).Google Scholar
11. Yudintsev, S. V., Stefanovsky, S. V., Kirjanova, O. I., Lian, J., and Ewing, R. C., Atomic Energy (Russ.) 90, 467 (2001).Google Scholar
12. Lian, J., Wang, L. M., Ewing, R. C., Yudintsev, S. V. and Stefanovsky, S. V., Appl. Phys. Lett., to be submitted.Google Scholar