No CrossRef data available.
Article contents
Raman Studies of Carrier Activation in Laser Annealed GaAs Capped with Silicon Nitride
Published online by Cambridge University Press: 28 February 2011
Abstract
Carrier concentrations exceeding 1019/cm3 in GaAs implanted with Si (2 × 1014/cm2 @ 140 keV) have been obtained by pulsed laser annealing with either a dye laser (λ = 728 nm) or a XeCl excimer laser (λ = 308 nm). Carrier concentrations were measured by plasmon Raman scattering over a wide range of anneal energy densities. Compared with capless laser annealing, much higher carrier activations were achieved when the annealing laser pulse was incident through a Si3N4 cap.
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 1987
References
1.
Anderson, C. L., Mat. Res. Soc. Symp. Proc.
4, 653 (1982); F. H. Eisen, Ion Implantation and Beam Processing, ed. by J.S. Williams and J. M. Poate, p. 327 (Academic Press, Sidney, 1984).CrossRefGoogle Scholar
2. See, for example, the recent reviews by Pearton, S. J., Gibson, J. M., Jacobson, D. C., Poate, J. M., Williams, J. S. and Boerma, D. O., Mat. Res. Soc. Symp. Proc.
52, p. 351 (1986).CrossRefGoogle Scholar
3.
Patel, K. K., Bensalem, R., Shahid, M. A. and Sealy, B. J., Nucl. Instr. and Meth. in Phys. Res. B7/8, 418 (1985); M.A. Shahid, R. Gwilliam and B.J. Sealy, Electron Lett. 21, 729 (1985).CrossRefGoogle Scholar
4.
Tsu, R., Baglin, J. E., Lher, G. L., and Tsang, J. C., Appl. Phys. Lett.
34, 153 (1979); R.L. Mozzi, W. Fabian and F.J. Piekarski, Appl. Phys. Lett. 35, 337 (1979); D.E. Davies, J.P. Lovenko and T.G. Ryan, Appl. Phys. Lett. 37, 612 (1980).CrossRefGoogle Scholar
5.
Inada, T., Tokunaga, K. and Taka, S., Appl. Phys. Lett.
35, 546 (1979); J. Fletcher, J. Narayan and D.H. Lowndes, Mat. Res. Soc. Symp. Proc. 2, 421 (1981).CrossRefGoogle Scholar
6.
Kular, S. S., Sealy, B. J., Badawi, M. H., Stephens, K. G., Electron Lett.
15,414 (1979); M.H. Badawi, B.J. Sealy and K.G. Stephens, Electron Lett. 15, 448 (1979).CrossRefGoogle Scholar
7.
Oraby, A. H., Yuba, Y., Takai, M., Gamo, K. and Namba, S., Jpn. J. Appl. Phys.
23, 326 (1984); S. Nojima, J. Appl. Phys. 53, 5028 (1982); S. Nojima 52, 7445 (1981).CrossRefGoogle Scholar
8.
Jacobson, D. C., Pearton, S. J., Hull, R., Poate, J. M. and Williams, J. S., Mat. Res. Soc. Symp. Proc.
52 (1986).Google Scholar
9. Preliminary results were reported in Abbi, S. C., Yao, H. D., Hashmi, F., Bhat, A., Compaan, A., Leak, C. and Langer, D., Bull. Am. Phys. Soc.
31, 274 (1986).Google Scholar
12.
Gibbons, J. F., Johnson, W. S. and Mylorie, S. W., Projected Range Statistics Semiconductors and Related Materials (2nd ed.) (Dowden, Hutchinson and Ross, Stoudsburg, PA, 1975).Google Scholar
13.
Auston, D. H., Surko, C. M., Venkateswaran, T. N. C., Slusher, R. E. and Golovchenko, J. A., Appl. Phys. Lett.
33, 437 (1978).CrossRefGoogle Scholar
14.
Yao, H. D., Compaan, A. and Hale, E. B., Sol. State Commun.
56, 677 (1985).CrossRefGoogle Scholar
15.
Landoldt-Bornstein New Series 17a—”Semiconductors: Physics of Group IV and III-V Semiconductors,” Springer-Verlag, Berlin (1982).Google Scholar
17.
Shen, H., Pollak, F. H. and Sacks, R. M., Spectroscopic Characterization Techniques for Semiconductor Technology II (1985) (SPIE Vol.524 (p. 145.CrossRefGoogle Scholar
18.
Sze, S. M., Semiconductor Devices Physics and Technology (Wiley, New York) 1985, P. 160.Google Scholar
19. See, for example, the review by Abstreiter, G., Cardona, M. and Pinczuk, A. in Light Scattering In Solids IV (Springer Topics in Applied Physics, Vol.54) (Springer, New York, 1984).CrossRefGoogle Scholar
21.
Christel, L. A., Gibbons, J. F., and Mylroie, S., J. Appl. Phys.
51, 6176 (1980).CrossRefGoogle Scholar