Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-13T02:40:30.052Z Has data issue: false hasContentIssue false

Rapid Themal Annealing of Shallow. Diffused Contact Regions in GaAs

Published online by Cambridge University Press:  26 February 2011

N. J. Kepler
Affiliation:
Department of Electrical Engineering and Computer Sciences and the Electronics Research Laboratory. University of California. Berkeley. CA 94720
N. W. Cheung
Affiliation:
Department of Electrical Engineering and Computer Sciences and the Electronics Research Laboratory. University of California. Berkeley. CA 94720
P. K. Chu
Affiliation:
Charles Evans and Associates. San Mateo. CA 94402
Get access

Abstract

Rapid thermal annealing (RTA) is used to form shallow and heavily-doped contact regions in undoped, semi-insulating GaAs. These layers are formed by using a high-intensity tungstenhalogen lamp to diffuse germanium and selenium from a deposited GeSe thin-film. RTA reduces surface degradation and permits better control of the diffusion profile than conventional furnace annealing. Optimal 20-second RTA occurs above a diffusion threshold at 950°C but below the failure of the SiO2 encapsulant at 1100°C. The n+ regions created have peak impurity concentrations over 1020/cm3 at depths under 750 Å with sheet resistances less than 60 Ω/▩. Non-alloyed ohmic contacts exhibit specific contact resistivites of 2.2 × 10−4 Ω · cm−2.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wittmer, M., Pretorious, R., Mayer, J. W. and Nicolet, M-A., Sol. State Elec., 20, 433 (1977).CrossRefGoogle Scholar
2. Pearton, S. J.. Cummings, K. D. and Vella-Coleiro, G. P., J. Electrochem. Soc., 132, 2743 (1985).Google Scholar
3. Kuzuhara, M., Nozaki, T. and Kohzu, H., J. Appl. Phys., 58, 1204 (1985).Google Scholar
4. Pianetta, P. A., Stolte, C. A. and Hansen, J. L., Appl. Phys. Lett., 36, 597 (1980).CrossRefGoogle Scholar
5. Mozzi, R. L., Fabian, W. and Piekarski, F. J.. Appl. Phys. Lett., 35, 337 (1979).Google Scholar
6. Kirchner, P. D.. Jackson, T. N., Pettit, G. D. and Woodall, J. M.. Appl. Phys. Lett., 47, 26 (1985).Google Scholar
7. Barnes, P. A. and Cho, A. Y., Appl. Phys. Lett., 33, 651 (1978).Google Scholar
8. Kepler, N. J. and Cheung, N. W., in the Materials Research Society Proceedings on Ion-Beam Processes in Advanced Electronic Materials and Device Technology, edited by Appleton, B. R., Eisen, F. H. and Sigmon, T. W., (North-Holland, New York, 1985), Vol.45, p. 291.Google Scholar
9. lida, S. and Ito, K., J. Electrochem. Soc., 118, 768 (1971).Google Scholar
10. Miers, T. H., J. Electrochem. Soc., 129, 1795 (1972).CrossRefGoogle Scholar
11. Harshavardhan, K. S. and Krishna, K. N., Appl. Phys. Lett., 47, 1074 (1985).Google Scholar
12. Goldstein, B., Phys. Rev., 121, 1305 (1961).Google Scholar
13. Hower, P. L.. Hooper, W. W., Cairns, B. R., Fairman, R. D. and Tremere, D. A., in Semiconductors and Semimetals edited by Willardson, R. K. and Beer, A. C., (Academic Press, New York, 1971), Vol.7A, p. 178.Google Scholar
14. Berger, S. S., J. Electrochem. Soc., 119, 507 (1972).CrossRefGoogle Scholar
15. AG Associates, 1325 Borregas Avenue. Sunnyvale, CA 94089.Google Scholar
16. Werthen, J. G. and Scifres, D. R.. J. Appl. Phys., 52, 1127 (1981).CrossRefGoogle Scholar
17. Griffiths, J. E.. ECS Extended Abstract number 107. 168 (1982).Google Scholar