Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-13T07:17:17.732Z Has data issue: false hasContentIssue false

Raster Scanning Laser and UV Processing of nanocrystalline TiO2 Films for Sintering in Dye Solar Cells: Device Performance, Throughput and Embodied Energy

Published online by Cambridge University Press:  07 June 2012

Girolamo Mincuzzi
Affiliation:
CHOSE - Centre for Hybrid and Organic Solar Energy, Department of Electronic Engineering University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome (Italy)
Valerio Zardetto
Affiliation:
CHOSE - Centre for Hybrid and Organic Solar Energy, Department of Electronic Engineering University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome (Italy)
Luigi Vesce
Affiliation:
CHOSE - Centre for Hybrid and Organic Solar Energy, Department of Electronic Engineering University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome (Italy)
Malte Schulz-Ruhtenberg
Affiliation:
Fraunhofer Institut fur Lasertechnik, Steinbachstrasse 15, Aachen, 52074 - Germany
Arnold Gillner
Affiliation:
Fraunhofer Institut fur Lasertechnik, Steinbachstrasse 15, Aachen, 52074 - Germany
Andrea Reale
Affiliation:
CHOSE - Centre for Hybrid and Organic Solar Energy, Department of Electronic Engineering University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome (Italy)
Aldo Di Carlo
Affiliation:
CHOSE - Centre for Hybrid and Organic Solar Energy, Department of Electronic Engineering University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome (Italy)
Thomas M. Brown
Affiliation:
CHOSE - Centre for Hybrid and Organic Solar Energy, Department of Electronic Engineering University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome (Italy)
Get access

Abstract

A crucial step in Dye Solar Cell (DSC) fabrication is the sintering of the TiO2 layer which needs to guarantee good electromechanical bonding between nanoparticles whilst maintaining sufficiently large porosity to yield performing devices. The standard procedure for TiO2 sintering requires firing in an oven at ∼ 500°C. An alternative procedure consists in utilizing laser scanning processing which has the advantageous potential of being noncontact, local, low cost, rapid, selective, automated and scalable. We analyzed and optimised a laser process for the sintering of the TiO2 layers in dye solar cells analyzing temperature profiles, throughput and the embodied energy. The development of electronic and photovoltaic devices on plastic substrates is of considerable interest due to the advantages they bring in terms of flexibility and easy processing for lightweight, low-cost large-area applications. An alternative sintering procedure compatible with flexible substrates and large area processing consists in utilizing a UV lamp. We subjected TiO2 pastes deposited on conductive transparent substrates to UV irradiation. Fully plastic devices fabricated through this method showed efficiencies of 4%.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Grätzel, M., J. Photochem. Photobiol., C, Photochem. Rev., 4, 145153, (2003).Google Scholar
2. Giordano, F., Petrolati, E., Brown, T. M., Reale, A. and Di. Carlo, A., IEEE Transactions on Electron Devices, 58, 27592764 (2011)Google Scholar
3. Hinsch, A., Brandt, H., Veurman, W., Hemming, S., Nittel, M., Wu rfel, U., Putyra, P., Lang-Koetz, C., Stabe, M., Beucker, S., Fichter, K., Sol. Energy Mater. Sol. Cells, 93, 820824, (2009)Google Scholar
4. Mincuzzi, G., Vesce, L., Reale, A.; Di Carlo, A.; Brown, T.M., Appl. Phys. Lett., 95, 103312 (2009)Google Scholar
5. Watson, T., Mabbett, I., Wang, H., Peter, L., Worsley, D.. Progress in Photovoltaics: Research and Applications, 19, 482486 (2011).Google Scholar
6. Uchida, S., Tomiha, M., Masaki, N., Miyazawa, A., Takizawa, H.. Solar Energy Materials and Solar Cells, 81, 135139 (2004).Google Scholar
7. Arakawa, H., Yamaguchi, T., Sutou, T., Koishi, Y., Tobe, N., Matsumoto, D., Nagai, T.. Current Applied Physics, 10, S157S160 (2010)Google Scholar
8. Kim, H., Auyeung, R.C.Y., Ollinger, M., Kushto, G.P., Kafafi, Z. H., and Piquè, A., Appl. Phys. A, 83, 73, (2006)Google Scholar
9. Pan, H., Ko, S. H., Misra, N., Grigoropoulos, C. P., Appl. Phys. Lett. 94, 071117 (2009)Google Scholar
10. Mincuzzi, G., Vesce, L., Liberatore, M., Reale, A.; Di Carlo, A.; Brown, T.M., IEEE Trans Electron Dev., 58, 3179 (2011)Google Scholar
11. Mincuzzi, G., Schulz-Ruhtenberg, M., Vesce, L., Reale, A., Di Carlo, A., Gillner, A., Brown, T.M., Progress in Photovoltaics, (accepted).Google Scholar
12. Zardetto, V., Brown, T.M., Reale, A, Di Carlo, A, J. Polymer Science B- Polymer Physics, 49, 638 (2011)Google Scholar
13. Longo, et al. ., J. of Photochemistry and Photobiology A: Chemistry, 159, 3339 (2003)Google Scholar
14. Gutierrez, et al. ., J. of Photochemistry and Photobiology A: Chemistry, 175, 165171 (2005)Google Scholar
15. Zeng, et al. . Phys. Status Solidi A, 207, 22012206 (2010)Google Scholar
16. Zardetto, V., Brown, T.M., Reale, A, Di Carlo, A, manuscript in preparation.Google Scholar