Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-15T00:44:39.739Z Has data issue: false hasContentIssue false

Rate of SiC Deposition from Methyltrichlorosilane and Influence of HCL Addition

Published online by Cambridge University Press:  15 February 2011

Christof Delhaes
Affiliation:
Dipl.-Ing. Ch. Delhaes and Prof. Dr.-Ing. D. Neuschütz, Lehrstuhl für Theoretische Hüttenkunde, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, D-52056 Aachen, Germany
Dieter Neuschütz
Affiliation:
Dipl.-Ing. Ch. Delhaes and Prof. Dr.-Ing. D. Neuschütz, Lehrstuhl für Theoretische Hüttenkunde, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, D-52056 Aachen, Germany
Get access

Abstract

Suitable feedgas compositions for monophase SiC deposition were determined starting from methyltrichlorosilane-hydrogen-argon mixtures at 1 bar total pressure and H2/MTS ratios between 50 and zero. At temperatures from 900 to 1400°C, only a ratio of 1 at PMTS = 18 mbar gave the desired result. The deposition rate of SiC was determined as a function of MTS and HCl partial pressures, of gas flow rate, and of temperature at a H2/MTS ratio of 1. Two different rate equations were found at [MTS]/[HCI] ≥ 5.8 (region I) and < 5.8 (region II), respectively:

where brackets denote gas concentrations. The apparent activation energy was 380 kJ/mol common to both rate equations. A mathematical model taking into account temperature fields at reactor wall and substrate, heat and mass transport in the flowing gas, and heterogeneous reaction rates jSiC(I) and (II) was developed and found to be in very good agreement with the experimental results.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Fischman, G.S., Petuskey, W.T., J. Am. Ceram. Soc. 68 (4), 185190 (1985).Google Scholar
[2] Motojima, S., Hasegawa, M., J. Vac. Sci. Technol. A 8 (5), 37633768 (1990).Google Scholar
[3] Neuschüitz, D., Salehomoum, F. in Chemical Vapor Deposition of Refractory Metals and Ceramics II, edited by Besman, T.M., Gallois, B.M., Warren, J.W. (Mater. Res. Soc. Proc. 250, Pittsburgh, PA, 1991) pp. 4146.Google Scholar
[4] Schintlmeister, W., Wallgram, W., Girl, K., High Temp.-High Press. 18, 211 (1986).Google Scholar
[5] Yeheskel, J., Again, S., M.S. Dariel in Proc. 5th Israels Mat. Eng. Conf., edited by Bamberger, M., Schorr, M. (Freund Publishing House, London, 1991) pp. 135139.Google Scholar
[6] Besmann, T.M., Johnson, M.L. in Proc. 3rd Int. Symp. Ceram. Mat. and Comp. for Engines, edited by Tennery, V.J. (Amer. Ceram. Soc., Westerville, OH, 1989) pp. 443450.Google Scholar
[7] Langlais, F., Prébende, C., Tarride, B., Naslain, R., de Physique, J., Coll. C5, Suppl. au no. 5, tome 50, 93 (1989).Google Scholar
[8] Loumagne, F., Langlais, F., Naslain, R., de Physique, J. IV, Coll C3, Suppl. au J. de Physique II, Volume 3, 527 (1993).Google Scholar
[9] Fedoseev, D.V., Dorokhovich, V.P., Lavrent'ev, A.V., Zadorozhnyi, O.I., Varshavskaya, I.G., Izv. Akad. Nauk SSSR, Neorgan. Mat. 12 (10), 17961799 (1976).Google Scholar
[10] Brennfleck, K., Fitzer, E., Schoch, G., Dietrich, M. in Proc. Ninth Int. Conf. Chem. Vap. Deposition 1984, edited by Robinson, McD. et al. (The Electrochemical Soc., Pennington, NJ, 1984) pp. 649662.Google Scholar
[11] Besmann, T.M., Sheldon, B.W., Moss, T. III, Kaster, M.D., J. Am. Ceram. Soc. 75 (10), 2899 (1992).Google Scholar
[12] Sotirchos, S.V., Papasouliotis, G.D. in Chemical Vapor Deposition of Refractory Metals and Ceramics II, edited by Besman, T.M., Gallois, B.M., Warren, J.W. (Mater. Res. Soc. Proc. 250, Pittsburgh, PA, 1991) pp. 3540.Google Scholar
[13] Schoch, G., Dissertation, TU-Karlsruhe (1990).Google Scholar
[14] Ivanova, L.M., Pletyushkin, A.A., Izv. Akad. Nauk SSSR, Neorgan. Mat. 3 (10), 18171822 (1967).Google Scholar
[15] Neuschütz, D., Zimdahl, S., Zimmermann, E. in Proc. Twelfth Int. Symp. Chem. Vap. Deposition, edited by Jensen, K.F. and Cullen, G.W. (The Electrochemical Soc. Proc. Vol.93–2, Pennington, NJ, 1993) pp. 17.Google Scholar
[16] Allendorf, M.D., Melius, C.F., Osterheld, Th.H. in Proc. Twelfth Int. Symp. Chem. Vap. Deposition, edited by Jensen, K.F. and Cullen, G.W. (The Electrochemical Soc. Proc. Vol.93–2, Pennington, NJ, 1993) pp. 2026.Google Scholar
[17] Zimdahl, S., Messungen und Simulationen zur kinetisch kontrollierten Erzeugung dünner Schichten nach dem CVD-Verfahren, Fortschr.-Ber. VDI Reihe 5 Nr. 368, Düsseldorf: VDI-Verlag 1994.Google Scholar