Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T01:12:52.199Z Has data issue: false hasContentIssue false

RBS, TEM and SEM Characterization of Gold Nanoclusters in TiO2(110)

Published online by Cambridge University Press:  01 February 2011

V. Shutthanandan
Affiliation:
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
Y. Zhang
Affiliation:
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
C. M. Wang
Affiliation:
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
J. S. Young
Affiliation:
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
L. Saraf
Affiliation:
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
S. Thevuthasan
Affiliation:
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
Get access

Abstract

Nucleation of gold nanoclusters in TiO2(110) single crystal using ion implantation and subsequent annealing were studied by Rutherford backscattering spectrometry /channeling (RBS/C), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Approximately 1000 Au2+/nm2 were implanted at room temperature in TiO2(110) substrates. TEM and SEM measurements reveal that rounded nanoclusters were formed during the implantation. In contrast, subsequent annealing in air for 10 hours at 1275 K promoted the formation of faceted (rectangular shaped) Au nanostructures in TiO2. RBS channeling measurements further reveled that Au atoms randomly occupied the host TiO2 lattice during the implantation. However, it appears that some Au atoms moved to the Ti lattice positions after annealing.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Henrich, V. E., Cox, P. A., The Surface Science of Metal Oxides, Cambridge University Press, Cambridge, 1994 Google Scholar
2. Diebold, U., Surf. Sci. Report, 48, 53 (2003).Google Scholar
3. Campbell, C. T., Surf. Sci. Report, 27, 1 (1997).Google Scholar
4. Bond, G. C., Thompson, D. T., Catal. Rev.-Sci. Eng. 418, 319 (1999);Google Scholar
Cosandey, F. and Madey, T. E., Surf. Rev. Lett. 8, 73 (2001).Google Scholar
5. Zimmerman, R. L., Ila, D., Williams, E. K., Sarkiso, S., Poker, D. B., Hensley, D. K., Nucl. Instr. Meth. B 141, 308 (1998);Google Scholar
6. Wang, C. M., Thevuthasan, S., Shutthanandan, V., Cavanagh, A., Jiang, W. and Thomas, L. E., J. Appl. Phys. 93, 6327, (2003)Google Scholar
7. Takahiro, K., Kunimatsu, A., Nagata, S., Yamaguchi, S., Yamamoto, S., Aoki, Y., and Naramoto, H., Nucl. Instr. Meth. B 152, 314 (1999).Google Scholar
8. White, C. W., Zhou, D. S., Budai, J. D., Zuhr, R. A., Magruder, R. H., Osborne, D. H., Mater. Res. Soc. Symp. Pro 316, 499 (1994);Google Scholar
Magruder, R. H., Yang, L., Haglund, R. F. Jr, White, C. W., Dorsinville, R., and Alfano, R. R., Appl. Phys. Lett. 62, 1730 (1993)Google Scholar
9. White, C. W., Thomas, D. K., Hensley, D. K., Zuhr, R. A., MaCallum, J. C., Pogany, A., Haglund, R.F., Magruder, R. H., Yang, L., Nanostruct. Mater. 3, 447 (1993)Google Scholar
10. Henderson, D. O., Tung, Y. S., Ueda, A., Mu, R., Xue, Y., hall, C., Collins, W. E., White, C. W., Zuhr, R. A., Zhu, J. G., Wang, P. W., J. Vac. Sci. Technol. A 14, 1199 (1996).Google Scholar
11. Thevuthasan, S., Peden, C.H.F., Engelhard, M.H., Baer, D.R., Herman, G.S., Jiang, W., Liang, Y., and Weber, W.J., Nucl. Instr. Meth. 1999, A 420, 81.Google Scholar
12. SIMNRA User's Guide. edited by Mayer, M., Max-Plank-Institut fur Plasmaphysik, Germany (1997).Google Scholar