Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T01:16:45.071Z Has data issue: false hasContentIssue false

R&D Status and Needs for Improved EB-PVD Thermal Barrier Coating Performance

Published online by Cambridge University Press:  17 March 2011

C. Leyens
Affiliation:
DLR-German Aerospace Center Institute of Materials Research 51170 Cologne, Germany
U. Schulz
Affiliation:
DLR-German Aerospace Center Institute of Materials Research 51170 Cologne, Germany
M. Bartsch
Affiliation:
DLR-German Aerospace Center Institute of Materials Research 51170 Cologne, Germany
M. Peters
Affiliation:
DLR-German Aerospace Center Institute of Materials Research 51170 Cologne, Germany
Get access

Abstract

The key issues for thermal barrier coating development are high temperature capability and durability under thermal cyclic conditions as experienced in the hot section of gas turbines. Due to the complexity of the system and the interaction of the constituents, performance improvements require a systems approach. However, there are issues closely related to the ceramic top coating and the bond coat, respectively. Reduced thermal conductivity, sintering, and stresses within the ceramic coating are addressed in the paper as well as factors affecting failure of the TBC by spallation. The latter is primarily governed by the formation and growth of the thermally grown oxide scale and therefore related to the bond coat. A strategy for lifetime assessment of TBCs is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kaysser, W.A., Krell, T., Bartsch, M., Leyens, C., Schulz, U. and Peters, M., Surface Engineering EUROMAT '99, ed. Dimigen, H., (Wiley-VCH, 2000), pp.312.Google Scholar
2. Maloney, M.J., U. S. Patent 6,007,880, 1999.Google Scholar
3. Maloney, M.J., U. S. Patent 6,057,047, 2000.Google Scholar
4. Schulz, U., Fritscher, K. and Leyens, C., Surface and Coatings Technology, 133–134, 4048 (2000).Google Scholar
5. Wortman, D., U.S. Patent 5,942,334, 1999.Google Scholar
6. Alperine, S., Derrien, M., Jaslier, Y. and Mevrel, P., AGARD R–823, 1–1/1 (1997).Google Scholar
7. Dinwiddie, R.B., Beecher, S.C. and Porter, W.D., The effect of thermal aging on the thermal conductivity of plasma sprayed and EB-PVD thermal barrier coatings International Gas Turbine and Aeroengine Congress & Exhibition (The American Society of Mechanical Engineers, 1996).Google Scholar
8. Dorvaux, J.-M., Lavigne, O., Mevrel, R., Poulain, M., Renollet, Y. and Rio, C., AGARD R-823, 13-1/13-10 (1997).Google Scholar
9. Klemens, P.G. and G. M., , Materials Science and Engineering, A245, 143149 (1998).Google Scholar
10. Nicholls, J.R., Lawson, K.J., Rickerby, D.S. and Morrell, P., AGARD R-823 Report, 6-1/6-9 (1997).Google Scholar
11. Ravichandran, K.S., An, K., Dutton, R.E. and Semiatin, S.L., AGARD R-823 Report, 14-1/14-12 (1997).Google Scholar
12. Taylor, R.E., Materials Science and Engineering, A245, 160167 (1998).Google Scholar
13. Rickerby, D.S., Morrel, P. and Tamarin, Y.A., Europe Patent EP 0 825 271 A1, 1997, filed.Google Scholar
14. Alperine, S.A., Gerzdev, S., Jaslier, Y.-P. and Tamarin, Y., Europe Patent EP 0 990 716 A1, 1999, filed.Google Scholar
15. Rickerby, D.S., Morrell, P. and Tamarin, Y.A., U. S. Patent 6,025,078, 2000.Google Scholar
16. Rickerby, D.S., Europe Patent EP 0 902 104 A2, 1998, filed.Google Scholar
17. Maloney, M., Achter, H. and Barkalow, B.. Development of low conductivity thermal barrier coatings, TBC Workshop, (1997).Google Scholar
18. Maloney, M.J., Europe Patent EP 0 992 603 A1, 1999, filed.Google Scholar
19. Padture, N.P., Gell, M. and Klemens, P.G., U. S. Patent 6,015,630, 2000.Google Scholar
20. Krell, T., Thermische und thermophysikalische Eigenschaften von elektronenstrahlgedampften chemisch gradierten Al2O3/PYSZ-Wä rmedä mmschichten, Ph.D. thesis, VDI-Fortschritt-Berichte, (VDI-Verlag, 2001, in press).Google Scholar
21. Johnson, C.A., Ruud, J.A., Bruce, R. and Wortman, D., Surface and Coatings Technology, 108–109, 8085 (1998).Google Scholar
22. Terry, S.G., Litty, J.R. and Levi, C.G., Evolution of porosity and texture in thermal barrier coatings grown by EB-PVD, Elevated Temperature Coatings: Science and Technology III, ed. Hampikian, J.M. and Dahotre, N.B., (TMS, 1999), pp. 1325.Google Scholar
23. Schulz, U., Wachstum, Mikrostruktur und Lebensdauer von elektronenstrahlaufgedampften Wä rmedä mmschicht-Systemen für Turbinenschaufeln, in Bergakademie Freiberg, Ph.D. thesis, (Verlag Shaker, 1995).Google Scholar
24. Marijnissen, G.H., Lieshout, A.H.F. van, Ticheler, G.J., Bons, H.J.M. and Ridder, M.L., U.S. Patent 5,876,860, 1999.Google Scholar
25. Schulz, U., Journal of the American Ceramic Society, 83, 904910 (2000).Google Scholar
26. Bruce, R.W., Wortman, D.J., Viguie, R. and Skelly, D.W., U. S. Patent 5,081,088, 1999.Google Scholar
27. Schulz, U., Fritscher, K., Leyens, C. and Peters, M., Influence of processing on microstructure and performance of EB-PVD thermal barrier coating, ASME Turbo Expo 2000, (ASME, 2000), paper no. 2000-GT-0579.Google Scholar
28. Stiger, M.J., Yanar, N.M., Topping, M.G., Pettit, F.S. and Meier, G.H., Zeitschrift für Metallkunde, 90, 10691078 (1999).Google Scholar
29. Jones, R.L., U. S. Patent 6,044,830, 2000.Google Scholar
30. Zhu, D. and Miller, R.A., Surface and Coatings Technology, 108–109, 114120 (1998).Google Scholar
31. Schulz, U., Fritscher, K., Leyens, C. and Peters, M., JOM-e, 49, (1997).Google Scholar
32. Krell, T., Schulz, U., Peters, M. and Kaysser, W.A., Materials Science Forum, 308–311, 396401 (1999).Google Scholar
33. Leushake, U., K. T., , Schulz, U., Peters, M., Kaysser, W.A. and Rabin, B.H., Surface and Coatings Technology, 94–95, 131136 (1997).Google Scholar
34. Wright, P.K. and Evans, A.G., Current Opinion in Solid State and Materials Science, 4, 255265 (1999).Google Scholar
35. Leyens, C., Schulz, U., Pint, B.A. and Wright, I.G., Surface and Coatings Technology, 120–121, 6876 (1999).Google Scholar
36. Gell, M., Jordan, E., Vaidnanathan, K., McCarron, K., Barber, B., Sohn, Y.-H. and Tolpygo, V.K., Surface and Coatings Technology, 120–121, 5360 (1999).Google Scholar
37. Jordan, E.H., Gell, M., Pease, D.M., Shaw, L., Clarke, D.R., Gupta, V., Barber, B. and Vaidyanathan, K.. Bond strength and stress measurements in thermal barrier coatings. 1997: American Society of Mechanical EngineersGoogle Scholar
38. Evans, A.G., He, M.Y. and Hutchinson, J.W., Acta Materialia, 45, 35433554 (1997).Google Scholar
39. Yang, Y.Q., Leyens, C., Schulz, U., Dudek, H.J. and Kaysser, W.A.. TEM Studies on thermally grown oxides of EB-PVD thermal barrier coatings, Proc. Materials Week 2000, (Wiley -VCH, 2000, in press).Google Scholar
40. Leyens, C., Schulz, U., Braue, W. and Yang, Y.Q., (2001, in preparation).Google Scholar
41. Leyens, C., Fritscher, K., Peters, M. and Kaysser, W.A., Oxidation of Metals, 34, 329352 (1995).Google Scholar
42. Taylor, T.A. and Bettridge, D.F., Surface and Coatings Technology, 87088, 914 (1996).Google Scholar
43. Pint, B.A. and Wright, I.G., Cyclic Oxidation Behavior of Cast NiCrAl Alloys, High Temperature Corrosion and Materials Chemistry, ed. Hou, P.Y., et al. , (Electrochemical Society, 1998), pp. 263274.Google Scholar
44. Leyens, C., Pint, B.A. and Wright, I.G., Surface and Coatings Technology, 133–134, 1522 (2000).Google Scholar
45. Pint, B.A., Haynes, J.A., More, K.L., Wright, I.G. and Leyens, C., Compositional effects on aluminide oxidation performance: objectives for improved bond coats, Superalloys 2000, (TMS, 2001, in press).Google Scholar
46. He, M.Y., Evans, A.G. and Hutchinson, J.W., Acta Materialia, 45, 34813489 (1997).Google Scholar
47. Meier, S.M., Nissley, D.M., Sheffler, K.D. and Cruse, T.A., ASME Journal of Engineering for Gas Turbines and Power, 114, 258263 (1992).Google Scholar
48. Miller, R.A., Journal of the American Ceramic Society, 67, 517521 (1984).Google Scholar
49. Bartsch, M., Marci, G., Mull, K. and Sick, C., Lifetime prediction of ceramic thermal barrier coatings based on lifetime analyses of close to reality test, Proc. 7th Int. Symposium on Ceramic Materials and Components for Engines, 2000, in press.Google Scholar