Published online by Cambridge University Press: 28 February 2011
The kinetics of hydrolysis of hexamethylcyclotrisiloxane and di-t-butyldimesitylcyclodisiloxane in tetrahydrofuran solution have been determined and compared to hydrolysis rates of silica defects. In the presence of sufficient excess witer, the first-order rate constant of the cyclotrisiloxine, k= 3.8 × 10−3 min is similar to the rate constant, k = 5.2 × 10−1 min, of the disappearance of the D2 Raman silica defect band it has been proposed to model. Limited hydrolysis rate data for the cyclodisiloxane suggests that it hydrolyzes at least four times faster than does the cyclotrisiloxane. These data are consistent with rate data available for silica crack growth and support the assignment of highly strained siloxane bonds at the crack tip to cyclodisiloxanes. Infrared spectra determined for the cyclodisiloxanes lend further support to this model.