Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-15T01:04:17.673Z Has data issue: false hasContentIssue false

Real Space Method of Powder Diffraction for Non-Periodic and Nearly Periodic Materials

Published online by Cambridge University Press:  21 February 2011

T. Egami
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104-6272
B. H. Toby
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104-6272
W. Dmowski
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104-6272
Chr. Janot
Affiliation:
Institut-Laue-Langevin, 156X-38042 Grenoble Cedex, France
J. D. Jorgensen
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
Get access

Abstract

The use of high-energy neutrons from pulsed or hot sources allows the method of atomic pair distribution analysis to be applied to the structural determination of crystalline as well as amorphous solids. This method complements the standard crystallographic methods in studying non-periodic aspects of solids with or without long range order.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Warren, B.E., X-Ray Diffraction, (Addison-Wesley, Reading, 1969).Google Scholar
2. Cargill, G.S. III, Solid St. Phys., 25, 227 (1975).Google Scholar
3. Lovesey, S.W., Theory of Neutron Scattering from Condensed Matter, (Clarendon Press, Oxford, 1984).Google Scholar
4. Placzek, G., Phys. Rev., 86, 377 (1952).Google Scholar
5. Nanao, S., Dmowski, W., Egami, T., Richardson, J. W. Jr., and Jorgensen, J. D., Phys. Rev., B35, 435 (1987).Google Scholar
6. International Tables for X-Ray Crystallography, edited by Ibers, J.A. and Hamilton, W.C. (The Kynoch Press, Birmingham, 1962), Vol. 3, p. 237.Google Scholar
7. Toby, B.H. and Egami, T., unpublished.Google Scholar
8. Wright, A.C. and Sinclare, R.N., J. Non-Cryst. Solids, 76, 351 (1985).Google Scholar
9. Subramanian, M.A., Clabrese, J.C., Torardi, C.C., Gopalakrishnan, J., Askew, T.R., Flippen, R.B., Morrisey, K.J., Chowdhry, U. and Sleight, A.W., Nature, 332, 420 (1988).Google Scholar
10. Cox, D.E., Torardi, C.C., Subramanian, M.A., Gopalakrishnan, J. and Sleight, A.W., Phys. Rev., B38, 6624 (1988).CrossRefGoogle Scholar
11. Dmowski, W., Toby, B.H., Egami, T., Subramanian, M.A., Gopalakrishnan, J. and Sleight, A.W., Phys. Rev. Lett., 61, 2608 (1988).Google Scholar
12. Shannon, R.D., Acta Cryst., A32, 751 (1976).Google Scholar
13. Egami, T., Toby, B.H., Dmowski, W., Billinge, S., Davies, P.K., Jorgensen, J.D., Subramanian, M.A. and Sleight, A.W., Physica C, in press.Google Scholar
14. Toby, B.H., Dmowski, W., Egami, T., Jorgensen, J.D., Subramanian, M.A., Gopalakrishnan, J. and Sleight, A.W., Physica C, in press.Google Scholar