Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-04T04:43:01.843Z Has data issue: false hasContentIssue false

Real Space Multiple Scattering Description of Alloy Phase Stability

Published online by Cambridge University Press:  25 February 2011

P. E. A. Turchi
Affiliation:
Lawrence Livermore National Laboratory, Condensed Matter Division (L-268), Livermore, CA 94550
M. Sluiter
Affiliation:
Lawrence Livermore National Laboratory, Condensed Matter Division (L-268), Livermore, CA 94550
Get access

Abstract

We present a brief overview of the advanced methodology which has been recently developed to study phase stability properties of substitutional alloys, including order-disorder phenomena and structural transformations. The approach is based on the real space version of the Generalized Perturbation Method, first introduced by Ducastelle and Gautier, within the Korringa-Kohn- Rostoker multiple scattering formulation of the Coherent Potential Approximation. Temperature effects are taken into account with a generalized meanfield approach, namely the Cluster Variation Method. The viability and the predictive power of such a scheme will be illustrated by a few examples, among them: (1) the ground state properties of alloys, in particular the ordering tendencies for a series of equiatomic bcc-based alloys, (2) the computation of alloy phase diagrams with the case of fcc and bcc-based Ni-Al alloys, (3) the calculation of antiphase boundary energies and interfacial energies, and (4) the stability of artificial ordered superlattices.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ducastelle, F., Order and Phase Stability in Alloys, Boer, F. R. de and Pettifor, D. G. eds. (North-Holland, Amsterdam, 1991), Cohesion and Structure series, vol. 3.Google Scholar
2. Kohn, W. and Sham, L. J., Phys. Rev. B140, A1133 (1965).Google Scholar
3. Ducastelle, F. and Gautier, F., J. Phys. F6, 2039 (1976).Google Scholar
4. Gonis, A., Zhang, X.-G., Freeman, A. J., Turchi, P. E. A., Stocks, G. M. and Nicholson, D. M., Phys. Rev. B36, 4630 (1987).Google Scholar
5. Györffy, B. L. and Stocks, G. M., Phys. Rev. Lett. 50, 374 (1983).Google Scholar
6. Connolly, J. W. D. and Williams, A. R., Phys. Rev. B27, 5169 (1983).Google Scholar
7. Gonis, A., Sluiter, M., Turchi, P. E. A., Stocks, G. M. and Nicholson, D. M., J. of the Less Com. Met. 168, 127 (1991).Google Scholar
8. Faulkner, J. S., Progress in Materials Science 27, 1 (1982); and references cited therein.Google Scholar
9. , Ising, Z. Phys. 31, 253 (1925).Google Scholar
10. Lloyd, P., Proc. Phys. Soc. (London) 90, 207 (1967).Google Scholar
11. Györffy, B. L. and Stott, M. J., Band Structure Spectroscopy of Metals and Alloys, Fabian, D. J. and Watson, L. M. (Academic Press, New York, 1972).Google Scholar
12. Bieber, A. and Gautier, F., J. Phys. Soc. Jap. 53, 2061 (1984).Google Scholar
13. Kikuchi, R., Phys. Rev. 81, 988 (1951); J. M. Sanchez, F. Ducastelle and D. Gratias, Physica A128, 334 (1984).Google Scholar
14. Turchi, P. E. A., Mater. Sci. and Eng. A127, 145 (1990); and references cited therein.Google Scholar
15. Finel, A. and Ducastelle, F., Phase Transformations in Solids, Tsakalakos, T. ed., MRS Symp. Proc., vol. 21 (North-Holland, Amsterdam, 1984), p. 293; A. Finel, Thèse de Doctorat d'Etat es Sciences Physiques, University Paris VI, 1987 (unpublished).Google Scholar
16. Binary Alloy Phase Diagrams, Massalski, T. B. ed. (ASM International, Materials Park, OH, 1990), vols. 1 to 3.Google Scholar
17. Turchi, P. E. A., Sluiter, M. and Stocks, G. M., MRS Symp. Proc., vol. 213, 75 (1991).Google Scholar
18. Enami, K. and Nenno, S., Trans. JIM 19, 571 (1978).Google Scholar
19. Saunders, N., Miodownik, A. P. and Dinsdale, A. T., Calphad 12, 351 (1988).Google Scholar
20. Noda, Y., Shapiro, S. M., Shirane, G., Yamada, Y. and Tanner, L. E., Phys. Rev. 1342, 10397 (1990).Google Scholar
21. Chassagne, F., Bessiere, M., Calvayrac, Y., Cenedese, P. and Lefebvre, S., Acta Metall. 37, 2329 (1989).Google Scholar
22. Livet, F., as quoted in [21].Google Scholar
23. Schweika, W., as quoted in [21].Google Scholar
24. Klaiber, F., Schonfeld, B. and Kostorz, G., Acta Cryst. A43, 525 (1987), as quoted in [21].Google Scholar
25. Sluiter, M., Turchi, P. E. A., Pinski, F. J. and Stocks, G. M., J. Mat. Sci. Eng., in press (1991).Google Scholar
26. Turchi, P. E. A., Sluiter, M., Pinski, F. J., Johnson, D. D., Nicholson, D. M., Stocks, G. M. and Staunton, J. B., Phys. Rev. Lett 67, 1779 (1991).Google Scholar
27. Johnson, D. D., Turchi, P. E. A., Sluiter, M., Nicholson, D. M., Pinski, F. J. and Stocks, G. M., MRS Symp. Proc., vol. 186, 21 (1991).Google Scholar
28. Inden, G., Bruns, S. and Ackermann, H., Phil. Mag. A55, 283 (1986); T. Kawabata and O. Izumi, Phil. Mag. A55, 823 (1987).Google Scholar
29. Beauchamp, P., Douin, J. and Veyssierre, P., Phil. Mag. A55, 565 (1987).Google Scholar
30. Potter, D.I., Mater. Sci. Eng. 5, 201 (1969/1970).Google Scholar
31. Rudy, M. and Sauthoff, G., Mater. Sci. Eng. 81, 525 (1986).Google Scholar
32. Finel, A., Mazauric, V. and Ducastelle, F., Phys. Rev. Lett. 65, 1016 (1990).Google Scholar
33. Beauchamp, P., Dirras, G. and Veyssierre, P., Phil. Mag. A64 (1991), accepted for publication.Google Scholar
34. Douin, J., Veyssierre, P. and Beauchsamp, P., Phil. Mag. A54, 375 (1986).Google Scholar
35. Crimp, M., Phil. Mag. Lett. 60, 45 (1989), as quoted in: M. Yamaguchi and Y. Umakoshi, Prog. Mat. Sci. 34, 1 (1990).Google Scholar
36. Yoo, M.H., Acta Metall. 35, 1559 (1987).Google Scholar
37. Selke, W., Alloy Phase Stability, Stocks, G. M. and Gonis, A. eds. (Kluwer, Dordrecht, 1989), p. 205; J. Yeomans, Sol. St. Phys. 41, 151 (1988).Google Scholar
38. Sluiter, M. and Turchi, P. E. A., MRS Symp. Proc., vol. 238 (1991), to be published; M. Sluiter and P. E. A. Turchi, Phys. Rev. B (1992), to be published.Google Scholar
39. Katsura, S. and Narita, A., Prog. Theor. Phys. 50, 1750 (1973); T. Morita, J. Phys. A7, 289 (1974), and ibid., 1613 (1974); M. Kaburagi and J. Kanamori, Prog. Theor. Phys. 54, 30 (1975).Google Scholar