Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-15T01:01:16.182Z Has data issue: false hasContentIssue false

Recent Advances in Low K Polymeric Materials

Published online by Cambridge University Press:  15 February 2011

K. R. Carter*
Affiliation:
IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, CA 95120–6099
Get access

Abstract

As microelectronic device dimensions decrease and functionality density increases, a change in interconnect materials, both conductors and insulators must change from currently used materials. To this end, we are actively in search of low dielectric constant materials that can be integrated into integrated circuit production. The greatest limiting factor in materials qualification are the stringent IC processing conditions (thermal stability, resistance to chemical/mechanical treatments). Current specifications for back-end-of-the-line (BEOL) thin film insulators call for materials with dielectric constants of 3.0–3.5 and turn of the century CMOS devices may require materials with dielectric constants approaching 2.0. While there are a number of possible candidates for current uses, the list of usable materials with dielectric constants <3.0 is very limited. Future low K candidates being examined include fluorinated polyimides and porous materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Monnig, K. A., Proc. SEMATECH - Low Dielectric Constant Materials and Interconnects Workshop, San Diego, CA, April, 1996.Google Scholar
2. Murarka, S. P., Solid State Tech. 3, 83 (1996).Google Scholar
3. Polymers for Electronic Applications, edited by Lai, J. H., (Publisher: CRC Press, Boca Raton, Florida, 1989.Google Scholar
4. Hedrick, J. L., Labadie, J. W., Russell, T. P., Hofer, D. C. and Wakharkar, V., Polymer 34, 4717 (1993).Google Scholar
5. Hedrick, J. L., Charlier, Y., DiPietro, R. A., Jayaraman, S. and McGrath, J. E., J. Polym. Sci., Polym, Chem. 34, 2867 (1996).Google Scholar
6. Carter, K. R., Labadie, J. W., DiPietro, R. A., Sanchez, M. I., Russell, T. P., Swanson, S. A., Auman, B. C., Lakshmanan, P. and McGrath, J. E., Polym. Mater. Sei. Eng. 72, 383 (1995).Google Scholar
7. Volksen, W., Sanchez, M. I., Cha, H. J. and Yoon, D. Y., Polym. Prep. 36(1), 709 (1995).Google Scholar
8. Carter, K. R., DiPietro, R. A., Sanchez, M. I.,, Russell, T. P., Lakshmanan, P. and McGrath, J. E., Chem. Mater. 9, 105 (1997).Google Scholar
9. Hedrick, J. L., Russell, T. P., Labadie, J.W., Lucas, M. and Swanson, S. A., Polymer 36, 265 (1995).Google Scholar
10. Hedrick, J. L., DiPietro, R. A., Charlier, Y. and Jérôme, R., High Perform. Polym. 7, 133 (1995).Google Scholar
11. McNeil, I. C. and Leiper, H. A., Poly. Deg. and Stab. 11, 267 (1985).Google Scholar
12. McNeil, I. C., Rincon, A., Poly. Deg. and Stab. 24, 59 (1989).Google Scholar
13. Carter, K. R., Hedrick, J. L., Ricther, R., Hawker, C. J., Miller, R. D., Furuta, P. T., and Flores, V., Polym. Prep. 37(2), 787 (1996).Google Scholar
14. Russell, T. P., Sanchez, M. I. and Hedrick, J. L., J. Polym Sci., Phys. Chem., 33(2), 247, (1995).Google Scholar
15. Boese, D., Lee, H., Yoon, D. Y., Swalen, J. D., and Rabolt, J. F., J. Polym. Sci., Part B: Polym. Phys. 30, 1321 (1992).Google Scholar
16. Cha, H. J., Hedrick, J., DiPietro, R. A., Blume, T., Beyers, R., and Yoon, D. Y., Appl. Phys. Lett, 68, 1930 (1996).Google Scholar