Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-10T08:27:36.713Z Has data issue: false hasContentIssue false

Recent Advances in the CVD of Metal Nitrides and Oxides

Published online by Cambridge University Press:  15 February 2011

Roy G. Gordon*
Affiliation:
Department of Chemistry, Harvard University, Cambridge, MA 02138.
Get access

Abstract

Use of metal-organic precursor materials has permitted thermal CVD of many metal nitrides at remarkably low temperatures and without corrosive by-products. Metallic TiN, VN, Nb3N4 and Mo2N3; semiconducting GaN and Sn3N4; and insulating AIN, Zr3N4, Hf3N4 and Ta3N5 can be deposited at temperatures typically in the range 100 to 400 C. Deposits free of carbon are obtained by transamination reactions of metal dialkylamido precursors with a sufficiently large excess of ammonia. The resulting TiN films are good diffusion barriers, and provide low contact resistance between metals and silicon.

Transparent semiconducting oxide films, such as SnO2, ZnO and TiO2, are often made by MOCVD for use in solar cells, energy-efficient window coatings and electro-optical displays. These wide band-gap semiconductors can be doped to n-type conductivity by a variety of dopant elements. Fluorine is the dopant which produces materials with the highest electron mobility, conductivity and transparency, by substituting for oxygen. Certain organic fluorine compounds have been found to be very effective fluorine dopants for these CVD reactions, yielding films with very shallow donors having nearly 100 % electrical activity.

Precursors for the CVD of alkaline earth metal oxides, particularly barium, lack the volatility and stability needed for reproducible deposition of superconducting, ferroelectric or magnetic oxides. Use of ammonia or volatile amines as carrier gases greatly enhances the volatility and stability of betadiketonates of barium, strontium and calcium, providing high and stable transport rates for source temperatures below 100 C, even for non-fluorinated ligands.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Schintlmeister, W., Pacher, O. and Pfaffinger, K., J. Electrochem. Soc. 123, 924 (1976);Google Scholar
Schintlmeister, W., Pacher, O., Krall, T., Wallgram, W. and Raine, T., Powder Metallurgy International 13, 71 (1981).Google Scholar
2 Gordon, Roy G., U.S. Patent No.4,535,0000 (13 August, 1985);Google Scholar
Kurtz, S. R. and Gordon, R. G., Thin Solid Films 140, 277 (1986).Google Scholar
3 Sherman, Arthur, in Chemical Vapor Deposition of Refractory Metals and Ceramics, edited by Besman, T. M. and Ballois, B. M., (Mater. Res. Soc. Proc., Pittsburgh, PA, 1989) p. 323;Google Scholar
Sherman, Arthur, J. Electrochem. Soc. 137, 1892 (1990).CrossRefGoogle Scholar
4 Rama Hegde, I., Fiordalice, Robert W. and Tobin, Philip J., Applied Phys. Lett. 62, 2326 (1993).Google Scholar
5 Sugiyama, K., Pac, S., Takahashi, Y., Motojima, S., J. Electrochem.Soc. 122, 1545 (1975).Google Scholar
6 Fix, R. M., Gordon, R. G., Hoffman, D. M., Chem. of Materials 2, 235 (1990).Google Scholar
7 Fix, R. M., Gordon, R. G., Hoffman, D. M., Mater. Res. Soc Symp. Proc. 168, 357 (1990);Google Scholar
Fix, R. M., Gordon, R. G., Hoffman, D. M., Chem. of Materials 3, 1138 (1991).Google Scholar
8 Musher, j. N. and Gordon, R. G., J. Electronic Materials 20, 1105 (1991).Google Scholar
9 Sandhu, G. S., Doan, T. T., Mater. Res. Soc. Conf. Proc. ULSI-VII, Pittsburgh, PA, 1992) pp. 323328;Google Scholar
Cale, T. S., Raupp, G. B., Hillman, J. T., Rice, M. J., Mater. Res. Soc. Conf. Proc. ULSI-VIII, Pittsburgh, PA, 1993) pp. 195202.Google Scholar
10 Intemann, A., Koerner, H., Koch, F., J. Electrochem. Soc. 140, 3215 (1993).Google Scholar
11 Bradley, D. C. and Torrible, E. G., Can. J. Chem. 41, 134 (1963).Google Scholar
12 Fix, R. M., Gordon, R. G., Hoffman, D. M., J. Am. Chem. Soc. 112, 7833 (1990).CrossRefGoogle Scholar
13 Weiller, B. H. and Partido, B. V., Chem. Mater. (submitted, 1993).Google Scholar
14 Prybyla, j. A., Chiang, C.-M., Dubois, L. H., J. Electrochem. Soc. (in press, 1993).Google Scholar
15 Fix, R. M., Gordon, R. G., Hoffman, D. M., Chem. of Materials 3, 1138 (1991).Google Scholar
16 Fix, R. M., Gordon, R. G., Hoffman, D. M., Chem. of Materials 5, 614(1993).CrossRefGoogle Scholar
17 Riaz, U., Gordon, R. G., Hoffman, D. M., J. Materials Res. 7, 1679 (1992).Google Scholar
18 Riaz, U., Gordon, R. G., Hoffman, D. M., Mater. Res. Soc. Symp. Proc. 242, 445 (1992).Google Scholar
19 Riaz, U., Gordon, R. G., Hoffman, D. M., Chem. Materials 4, 68 (1992).Google Scholar
20 Mochel, j. M., U.S. Patent 2, 564, 706 (21 August, 1951).Google Scholar
21 Hu, J. and Gordon, R. G., J. Appl. Phys. 71, 880 (1992).Google Scholar
22 Lytle, W. O. and Junge, A. F., U.S. Patent 2, 566, 346 (4 September, 1951).Google Scholar
23 Gordon, R. G., U.S. Patent 4,146,657 (27 March, 1979).Google Scholar
24 Giunta, C. J., Zawadzki, A. G., Gordon, R. G., J. Phys. Chem. 96, 5364 (1991).Google Scholar
25 Borman, C. and Gordon, R. G., J. Electrochem. Soc. 136, 3820 (1989).Google Scholar
26 Proscia, j. and Gordon, R. G., Thin Solid Films 214, 175 (1992).Google Scholar
27 Hu, Jianhua. and Gordon, Roy G., Solar Cells 30, 437 (1991).CrossRefGoogle Scholar
28 Buriak, j. M., Cheatham, L. K., Graham, J. J., Gordon, R. G. and Barron, A. R., Mat. Res. Soc. Symp. 204, 545 (1991).Google Scholar