Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-28T10:19:31.976Z Has data issue: false hasContentIssue false

Recent Developments in Thermodynamic Theory of Ferroelectric Thin Films

Published online by Cambridge University Press:  26 February 2011

Nikolay Pertsev*
Affiliation:
pertsev@IWE.RWTH-Aachen.de, Forschungszentrum Juelich, Institut fuer Festkoerperforschung, D-52425 Juelich, Juelich, N/A, N/A, Germany, +49-2461612994, +49-2461612550
Get access

Abstract

The nonlinear thermodynamic theory of epitaxial ferroelectric films has predicted several important strain-induced phenomena, which have been already observed experimentally. This justifies further development of this theory aiming at the better understanding of the structure/property relationships in thin-film ferroelectrics. To that end, a number of new theoretical studies have been performed recently. First, the thermodynamic formalism has been extended to epitaxial films grown on dissimilar substrates inducing anisotropic strains and a shear deformation in the film plane. Second, the polarization states and dielectric properties were calculated for polydomain Pb(Zr1-xTix)O3 films deposited on cubic substrates. Third, the effect of depolarizing field on the physical properties of strained single-domain films sandwiched between continuous electrodes was described. The results of these studies will be discussed in this paper.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Landau, L., Sow. Phys. 11, 26 (1937); L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media (Pergamon, Oxford, 1984).Google Scholar
2 Devonshire, A. F., Phil. Mag. 40, 1040 (1949); 42, 1065 (1951); Adv. Phys. 3, 85 (1954).Google Scholar
3 Bell, A. J. and Cross, L. E., Ferroelectrics 59, 197 (1984).Google Scholar
4 Haun, M. J., Furman, E., Jang, S. J., McKinstry, H. A., and Cross, L. E., J. Appl. Phys. 62, 3331 (1987).Google Scholar
5 Haun, M. J., Furman, E., Jang, S. J., and Cross, L. E., Ferroelectrics 99, 13 (1989).Google Scholar
6 Rossetti, G. A. Jr., Cross, L. E., and Kushida, K., Appl. Phys. Lett. 59, 2524 (1991).Google Scholar
7 Yamamoto, T. and Matsuoka, H., Jpn. J. Appl. Phys. 33, 5317 (1994).Google Scholar
8 Yano, Y., Iijima, K., Daitoh, Y., Terashima, T., Bando, Y., Watanabe, Y., Kasatani, H., and Terauchi, H., J. Appl. Phys. 76, 7833 (1994).Google Scholar
9 Pertsev, N. A., Arlt, G., and Zembilgotov, A. G., Microelectr. Eng. 29, 135 (1995).Google Scholar
10 Pertsev, N. A., Zembilgotov, A. G., and Tagantsev, A. K., Phys. Rev. Lett. 80, 1988 (1998).Google Scholar
11 Emelyanov, A. Yu., Pertsev, N. A., and Kholkin, A. L., Phys. Rev. B66, 214108 (2002).Google Scholar
12 Desu, S. B., Dudkevich, V. P., Dudkevich, P. V., Zakharchenko, I. N., and Kushlyan, G. L., Mater. Res. Soc. Symp. Proc. 401, 195 (1996).Google Scholar
13 Pertsev, N. A., Zembilgotov, A. G., and Tagantsev, A. K., Ferroelectrics 223, 79 (1999).Google Scholar
14 Pertsev, N. A., Tagantsev, A. K., and Setter, N., Phys. Rev. B61, R825 (2000).Google Scholar
15 Ban, Z.-G. and Alpay, S. P., J. Appl. Phys. 91, 9288 (2002).Google Scholar
16 Pertsev, N. A., Kukhar, V. G., Kohlstedt, H., and Waser, R., Phys. Rev. B67, 054107 (2003).Google Scholar
17 For BaxSr1-xTiO3 films, the accuracy of the diagrams reported in Ref. [15] is questionable at low temperatures since the P4 approximation was used in the calculations. This is not consistent with the fact that the dielectric stiffnesses of BaTiO3, which were employed to determine those of BaxSr1-xTiO3, were obtained in Ref. [3] from the fitting of experimental data in the P6 approximation.Google Scholar
18 Roitburd, A. L., Phys. Status Solidi A37, 329 (1976).Google Scholar
19 Pertsev, N. A. and Koukhar, V. G., Phys. Rev. Lett. 84, 3722 (2000).Google Scholar
20 Koukhar, V. G., Pertsev, N. A., and Waser, R., Phys. Rev. B64, 214103 (2001).Google Scholar
21 Li, Y. L., Hu, S. Y., Liu, Z. K., and Chen, L. Q., Appl. Phys. Lett. 78, 3878 (2001).Google Scholar
22 Li, Y. L., Choudhury, S., Liu, Z. K., and Chen, L. Q., Appl. Phys. Lett. 83, 1608 (2003).Google Scholar
23 Tenne, D. A., Xi, X. X., Li, Y. L., Chen, L. Q., Soukiassian, A., Zhu, M. H., James, A. R., Lettieri, J., Schlom, D. G., Tian, W., and Pan, X. Q., Phys. Rev. B69, 174101 (2004).Google Scholar
24 Haeni, J. H., Irvin, P., Chang, W., Uecker, R., Reiche, P., Li, Y. L., Choudhury, S., Tian, W., Hawley, M. E., Craigo, B., Tagantsev, A. K., Pan, X. Q., Streiffer, S. K., Chen, L. Q., Kirchoefer, S. W., Levy, J., and Schlom, D. G., Nature (London) 430, 758 (2004).Google Scholar
25 He, F., Wells, B. O., and Shapiro, S. M., Phys. Rev. Lett. 94, 176101 (2005).Google Scholar
26 Choi, K. J., Biegalski, M., Li, Y. L., Sharan, A., Schubert, J., Uecker, R., Reiche, P., Chen, Y. B., Pan, X. Q., Gopalan, V., Chen, L.-Q., Schlom, D. G., and Eom, C. B., Science 306, 1005 (2004).Google Scholar
27 Roytburd, A. L., Alpay, S. P., Nagarajan, V., Ganpule, C. S., Aggarwal, S., Williams, E. D., and Ramesh, R., Phys. Rev. Lett. 85, 190 (2000).Google Scholar
28 Yanase, N., Abe, K., Fukushima, N., and Kawakubo, T., Jpn. J. Appl. Phys. 38, 5305 (1999).Google Scholar
29 Zembilgotov, A. G., Pertsev, N. A., Kohlstedt, H., and Waser, R., J. Appl. Phys. 91, 2247 (2002).Google Scholar
30 Pertsev, N. A., Koukhar, V. G., Waser, R., and Hoffmann, S., Appl. Phys. Lett. 77, 2596 (2000).Google Scholar
31 Canedy, C. L., Li, H., Alpay, S. P., Salamanca-Riba, L., Roytburd, A. L., and Ramesh, R., Appl. Phys. Lett. 77, 1695 (2000).Google Scholar
32 Ban, Z.-G. and Alpay, S. P., J. Appl. Phys. 93, 504 (2003).Google Scholar
33 Chen, L., Nagarajan, V., Ramesh, R., and Roytburd, A. L., J. Appl. Phys. 94, 5147 (2003).Google Scholar
34 Sharma, A., Ban, Z.-G., Alpay, S. P., and Mantese, J. V., J. Appl. Phys. 95, 3618 (2004).Google Scholar
35 Lin, Y., Chen, X., Liu, S. W., Chen, C. L., Lee, J.-S., Li, Y., Jia, Q. X., and Bhalla, A., Appl. Phys. Lett. 84, 577 (2004).Google Scholar
36 Simon, W. K., Akdogan, E. K., Safari, A., and Bellotti, J. A., Appl. Phys. Lett. 87, 082906 (2005).Google Scholar
37 This approximation is sufficient for our purposes, because even in very thick films the lattice strains do not relax to zero outside the inhomogeneously strained thin layer near the interface, which appears in the presence of misfit-dislocation arrays.Google Scholar
38 Binder, K., Ferroelectrics 35, 99 (1981).Google Scholar
39 Zhong, W. L., Qu, B. D., Zhang, P. L., and Wang, Y. G., Phys. Rev. B50, 12375 (1994).Google Scholar
40 Vanderbilt, D. and Cohen, M. H., Phys. Rev. B63, 094108 (2001).Google Scholar
41 Li, Y. L., Cross, L. E., and Chen, L. Q., J. Appl. Phys. 98, 064101 (2005).Google Scholar
42 Zembilgotov, A. G., Pertsev, N. A., Böttger, U., and Waser, R., Appl. Phys. Lett. 86, 052903 (2005).Google Scholar
43 Wang, J. and Zhang, T.-Y., Appl. Phys. Lett. 86, 192905 (2005).Google Scholar
44 Similar calculations were performed for PbTiO3 films in Ref. [43] but the stability ranges of the ca' and ca'' states were overlooked. The results obtained in Ref. [43] for BaTiO3 films are probably only partially correct since the employed set of material parameters, taken from Ref. [10], was later found to be inappropriate for BaTiO3 [13].Google Scholar
45 Pompe, W., Gong, X., Suo, Z., and Speck, J. S., J. Appl. Phys. 74, 6012 (1993).Google Scholar
46 Pertsev, N. A. and Zembilgotov, A. G., J. Appl. Phys. 78, 6170 (1995).Google Scholar
47 Kukhar, V. G., Pertsev, N. A., Kohlstedt, H., and Waser, R., cond-mat/0411636.Google Scholar
48 Kelman, M. B., McIntyre, P. C., Gruverman, A., Hendrix, B. C., Bilodeau, S. M., and Roeder, J. F., J. Appl. Phys. 94, 5210 (2003).Google Scholar
49 Ivanchik, I., Sov. Phys. Solid State 3, 2705 (1962).Google Scholar
50 Batra, I. P., Würfel, P., and Silverman, B. D., Phys. Rev. Lett. 30, 384 (1973); Phys. Rev. B8, 3257 (1973); J. Vac. Sci. Technol. 10, 687 (1973).Google Scholar
51 Kretschmer, R. and Binder, K., Phys. Rev. B20, 1065 (1979).Google Scholar
52 Tilley, D. R. and Žekš, B., Ferroelectrics 134, 313 (1992).Google Scholar
53 Watanabe, Y., Phys. Rev. B57, 789 (1998).Google Scholar
54 Stephanovich, V. A., Luk'yanchuk, I. A., and Karkut, M. G., Phys. Rev. Lett. 94, 047601 (2005).Google Scholar
55 Plonka, R., Dittmann, R., Pertsev, N. A., Vasco, E., and Waser, R., Appl. Phys. Lett. 86, 202908 (2005).Google Scholar
56 Roytburd, A. L., Zhong, S., and Alpay, S. P., Appl. Phys. Lett. 87, 092902 (2005).Google Scholar
57 Junquera, J. and Ghosez, Ph., Nature (London) 422, 506 (2003).Google Scholar
58 Sai, N., Kolpak, A. M., and Rappe, A. M., Phys. Rev. B72, 020101(R) (2005).Google Scholar
59 For Pt/PbTiO3/Pt capacitors, the polarization enhancement in ultrathin films was predicted [58], being caused by a microscopic film/electrode interaction prevailing over the depolarizing-field effect.Google Scholar
60 The calculations were performed in the P8 approximation using the thermodynamic parameters of BaTiO3 obtained in Ref. [41] and the elastic and electrostrictive constants listed in Ref. [20].Google Scholar
61 Mokrý, P., Tagantsev, A. K., and Setter, N., Phys. Rev. B70, 172107 (2004).Google Scholar
62 Speck, J. S. and Pompe, W., J. Appl. Phys. 76, 466 (1994).Google Scholar
63 Dittmann, R., Plonka, R., Vasco, E., Pertsev, N. A., He, J. Q., Jia, C. L., Hoffmann-Eifert, S., and Waser, R., Appl. Phys. Lett. 83, 5011 (2003).Google Scholar