Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-15T11:19:01.706Z Has data issue: false hasContentIssue false

Recent Progress in Implantation and Annealing of Gan and Aigan

Published online by Cambridge University Press:  10 February 2011

J. C. Zolper
Affiliation:
Office of Naval Research, Arlington, VA 22217
J. Han
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-0603
S. B. Van Deusen
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-0603
M. H. Crawford
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-0603
R. M. Biefeld
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-0603
J. Jun
Affiliation:
High Pressure Research Center, Polish Academy of Sciences, Warsaw, Poland
T. Suski
Affiliation:
High Pressure Research Center, Polish Academy of Sciences, Warsaw, Poland
J. M. Baranowski
Affiliation:
High Pressure Research Center, Polish Academy of Sciences, Warsaw, Poland
S. J. Pearton
Affiliation:
University of Florida, Department of Materials Science and Engineering, Gainesville, FL 32611
Get access

Abstract

Heterostructure modulation doped transistors (MODFETs) based on AlGaN/GaN structures have demonstrated impressive DC and microwave performance often despite high transistor access resistance. One approach to reducing the access resistance is to use selective area Si-implantation. While several reports exist on Si-implantation in GaN, little work has been done on implantation in AlGaN. In addition, more information on the annealing of implantation damage in GaN is needed to optimize its use in FETs and thyristors.

We report the electrical and structural properties of Si-implanted Al0.15Ga0.85N based on Hall measurements and Rutherford Backscattering (RBS) spectra, respectively. Al0.15Ga0.85N shows less damage accumulation than GaN for a room temperature Si-implant dose of 5×1015 cm-2 based on the minimum channeling yield (26% for AlGaN as compared to 34% for GaN), however, as with GaN, this damage is difficult to remove by thermal annealing at °C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Khan, M. A., Bhattarai, A., Kuznia, J. N., and Olson, D. T., Appl. Phys. Lett. 63, 1214 (1993).Google Scholar
2. Binari, S. C., Rowland, L. B., Kruppa, W., Kelner, G., Doverspike, K., and Gaskill, D. K., Elect. Lett. 30, 1248 (1994).Google Scholar
3. Nguyen, N. X., Keller, B. P., Keller, S., Wu, Y.-F., Lee, M., Nguyen, C., Denbaars, S. P., Mishra, U. K., and Grider, D., Electron. Lett. 33, 334 (1997).Google Scholar
4. Zolper, J. C., Shul, R. J., Baca, A. G., Wilson, R. G., Pearton, S. J., and Stall, R. A., Appl. Phys. Lett. 68 2273 (1996).Google Scholar
5. Zolper, J. C., Pearton, S. J., Williams, J. S., Tan, H. H., and Stall, R. A., Materials Research Society, Fall 1996, Symposium N, vol.449 (MRS, Pittsburgh, PA, in press).Google Scholar
6. Zolper, J. C. and Shul, R. J., MRS Bulletin, 22, 36 (1997).Google Scholar
7. Pearton, S. J., Abernathy, C. R., Vartuli, C. B., Zolper, J. C., Yuan, C., Stall, R. A., Appl. Phys. Lett. 67, 1435 (1995).Google Scholar
8. Zolper, J. C., Crawford, M. Hagerott, Pearton, S. J., Abernathy, C. R., Vartuli, C. B., Yuan, C., and Stall, R. A., J. Electron. Mat. 25 839 (1996).Google Scholar
9. Zolper, J. C., Wilson, R. G., Pearton, S. J., and Stall, R. A., Appl. Phys. Lett. 68 1945 (1996).Google Scholar
10. Tan, H. H., Jagadish, C., Williams, J. S., Zoa, J., Cockayne, D. J. H., and Sikorski, A., J. Appl. Phys. 77, 87 (1995).Google Scholar
11. Zolper, J. C., Han, J., Biefeld, R., Pearton, S. J., Williams, J. S., Tan, H. H., and Karlicek, R. F., Materials Research Society, San Francisco, CA, March 31- April 4, 1997 (in press).Google Scholar