Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-15T01:08:47.775Z Has data issue: false hasContentIssue false

Recent Progress in the Growth of Mid-ir Emitters by Metalorganic Chemical Vapor Deposition

Published online by Cambridge University Press:  10 February 2011

R. M. Biefeld
Affiliation:
Sandia National Laboratory, Albuquerque, New Mexico, 87185, USA
A. A. Allerman
Affiliation:
Sandia National Laboratory, Albuquerque, New Mexico, 87185, USA
S. R. Kurtz
Affiliation:
Sandia National Laboratory, Albuquerque, New Mexico, 87185, USA
K. C. Baucom
Affiliation:
Sandia National Laboratory, Albuquerque, New Mexico, 87185, USA
Get access

Abstract

We report on recent progress and improvements in the metal-organic chemical vapor deposition (MOCVD) growth of mid-infrared lasers and using a high speed rotating disk reactor (RDR). The devices contain AlAsSb claddings and strained InAsSb active regions. These lasers have multi-stage, type I InAsSb/InAsP quantum well active regions. A semi-metal GaAsSb/InAs layer acts as an internal electron source for the multi-stage injection lasers and AlAsSb is an electron confinement layer. These structures are the first MOCVD multi-stage devices. Growth in an RDR was necessary to avoid the previously observed Al memory effects found in conventional horizontal reactors. A single stage, optically pumped laser yielded improved power (> 650 mW/facet) at 80 K and 3.8 μm. A multi-stage 3.8–3.9 μm laser structure operated up to T=170 K. At 80 K, peak power > 100 mW and a high slope-efficiency were observed in gain guided lasers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Allerman, A. A., Biefeld, R. M., and Kurtz, S. R., Appl. Phys. Lett. 69, 465 (1996).Google Scholar
[2] Kurtz, S. R., Allerman, A. A., and Biefeld, R. M., Appl. Phys. Lett. 70, 3188 (1997).Google Scholar
[3] Biefeld, R. M., Kurtz, S. R., and Allerman, A. A., J. Electronic Mater., 26, 903 (1997).Google Scholar
[4] Faist, J., Capasso, F., Sivco, D. L., Sirtori, C., Hutchinson, A. L., and Cho, A. Y., Science 264, 553 (1994).Google Scholar
[5] Yang, R. Q., Superlatt. Microstruct. 17, 77 (1995).Google Scholar
[6] Meyer, J. R., Vurgaftman, I., Yang, R. Q., and Ram-Mohan, L. R., Elect. Lett. 32, 45 (1996).Google Scholar
[7] Faist, J., Capasso, F., Sirtori, C., Sivco, D. L., Baillargeon, J. N., Hutchinson, A. L., Chu, S. N. G., and Cho., A. Y., Appl. Phys. Lett. 68, 3680 (1996).Google Scholar
[8] Lin, C. H., Yang, R. Q., Zhang, D., Murry, S. J., Pei, S. S., Allerman, A. A., and Kurtz, S. R., Elect. Lett. 33, 598 (1997).Google Scholar
[9] Yang, R. Q., Yang, B. H., Zhang, D., Lin, C. H., Murry, S. J., Wu, H., and Pei, S. S., Appl. Phys. Lett. 71, 2409 (1997).Google Scholar
[10] Breiland, W. G. and Evans, G. H., J. Electrochem. Soc., 138, 1806 (1991).Google Scholar
[ 11] Private Communication from McDaniel, D., USAF Phillips Laboratory, Albuquerque, NM.Google Scholar
[12] Choi, H.K. and Turner, G.W., Appl. Phys. Lett. 67, 332 (1995).Google Scholar