Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-28T14:09:05.805Z Has data issue: false hasContentIssue false

Recombination and Electronic Transport in Low-Gap a-Si,Ge:H,F Alloys

Published online by Cambridge University Press:  26 February 2011

S. Aljishi
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544
D. S. Shen
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544
V. Chu
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544
Z E. Smith
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544
J. P. Conde
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544
J. Kolodzey
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544
D. Slobodin
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544
S. Wagner
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544
Get access

Abstract

We have studied the temperature and intensity dependence (130K to 300K) of photo- and dark conductivity in a series of low-gap a-Si,Ge:H,F alloys (Eopt=1.25 to 1.33 eV) prepared under different deposition conditions. Electron time of flight experiments were conducted between 300K and 400K. Results reveal an increase in the slope of the exponential conduction band tail to ∼ 50 meV and a peak in electron trapping states at 0.3 to 0.4 eV below the conduction band edge, leading to a transition from extended to hopping conduction by electrons at slightly below room temperature. The alloys have midgap defect densities in the low 1017 cm−3eV−1 range.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

a) AT&T Bell Laboratories Graduate Fellow.Google Scholar
b) Now at University of Illinois, Department of Electrical and Computer Engineering, Champaign-Urbana, ILGoogle Scholar
c) Now at Polaroid Corp., Waltham, MAGoogle Scholar
1. Oda, S., Ishinara, S., Shibita, N., Takagi, S., Shirai, H., Miyauchi, A. and Shimizu, I., J. Non-Cryst. Solids, 77&78, 877 (1985).Google Scholar
2. Oda, S., Takagi, S. and Shimizu, I., Japan J. Appl. Phys. 25, 49 (1986).Google Scholar
3. Aljishi, S., Smith, Z E., Slobodin, D., Kolodzey, J., Chu, V., Schwarz, R. and Wagner, S., Mat. Res. Symp. Proc. 70, 269 (1986).Google Scholar
4. Skumanich, A., Frova, A. and Amer, N.M., Solid State Commun. 54, 597 (1985).Google Scholar
5. Oda, S., Takagi, S., Ishihara, S. and Shimizu, I. in “Tetrahedrally-Bonded Amorphous Semiconductors,” (Plenum, New York, 1985) 379.Google Scholar
6. Huang, C.-Y., Guha, S. and Hudgens, S.J., J. Non-Cryst. Solids 66, 87 (1984).Google Scholar
7. Stutzmann, M., Nemanich, R.J. and Stuke, J., Phys. Rev. B 30, 3595 (1984).Google Scholar
8. Karg, F., Kruhler, W., Moller, M., Klitzing, K.v., J. Appl. Phys. 60, 2016 (1986).Google Scholar
9. Shen, D.S., Aljishi, S., Conde, J.P., Smith, Z E., Chu, V. and Wagner, S., Phys. of Amorphous Semiconductor Devices, SPIE Proc. 763 (1987), to be published.Google Scholar
10. Shen, D.S., Conde, J.P., Aljishi, S., Smith, Z E., Chu, V., Kolodzey, J. and Wagner, S., 19th IEEE PVSC conf. (1987), to be published.Google Scholar
11. Aljishi, S., Smith, Z E., Chu, V., Kolodzey, J., Slobodin, D., Conde, J.P., Shen, D.S. and Wagner, S., ICOASMD, Palo Alto (1987), to be published.Google Scholar
12. Kolodzey, J., Aljishi, S., Schwarz, R., Slobodin, D. and Wagner, S., J. Vac. Sci. Technol. A 4 (6), 2499 (1986).Google Scholar
13. Slobodin, D., Aljishi, S., Okada, Y., Shen, D.S., Chu, V. and Wagner, S., Mat. Res. Soc. Symp. Proc. 70, 275 (1986).Google Scholar
14. Vanecek, M., Kocka, J., Stuchlik, J., Kozisek, Z., Stika, O. and Triska, A., Solar Energy Mat. 8, 411 (1983).Google Scholar
15. Smith, Z E., Chu, V., Shepard, K., Aljishi, S., Slobodin, D., Kolodzey, J., Wagner, S. and Chu, T.L., Appl. Phys. Lett., May 25, 1987.Google Scholar
16. Shen, D.S., Aljishi, S., Smith, Z E., Conde, J.P., Chu, V. and Wagner, S., Mat. Res. Soc. Symp. Proc., Spring 1987, to be published.Google Scholar
17. Mott, N.F. and Davis, E.A., “Electronic Processes in Non-Crystalline Materials,” Oxford, 1979.Google Scholar
18. Spear, W.E., Loveland, R.J. and Al-Sharbaty, , J. Non-Cryst. Sol. 15, 410 (1974).Google Scholar
19. Wronski, C.R. and Daniel, R., Phys. Rev B 23, 794(1981).Google Scholar
20. Anderson, D.A. and Spear, W.E., Phil. Mag. 36, 695 (1977).Google Scholar
21. Rose, A., “Concepts in Photoconductivity and Allied Problems,” (New York 1963).Google Scholar
22. Hoheisel, M., Carius, R. and Fuhs, W., J. Non-Cryst. Sol. 63, 313 (1984).Google Scholar