Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-28T10:17:34.477Z Has data issue: false hasContentIssue false

Reconstruction and Epitaxial Adlayers on SiC Surfaces: Structural Significance for Technological Applications

Published online by Cambridge University Press:  11 February 2011

U. Starke*
Affiliation:
Max-Planck-Institut für Festkörperforschung, Stuttgart, Germany.
Get access

Abstract

Structure and composition are reviewed for different surface phases of SiC(0001) and SiC(0001). The chemistry of well ordered phases spans from Si rich to graphitic composition with the excess elements arranged in adlayers and/or large scale reconstruction patterns. On SiC(0001) the Si rich (3×3) surface allows for step flow growth of monocrystalline homoepitaxial layers due to an extremely efficient dangling bond saturation. Si rich preparation or oxidative treatment are used for a controlled evolution of different stacking sequences on the adatom phase on SiC(0001) and could be utilized for the development of polytype heterostructures. On SiC(0001) a (2×2) phase shows three-fold coordinated adatoms with a different surface stacking reflecting the different growth behaviour of this surface. An epitaxially well matching silicon oxide monolayer can be prepared on both surface orientations by using a hydrogen etching or plasma treatment promising to facilitate low defect oxide films for MOS devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Verma, R. and Krishna, P., Polymorphism and Polytypism in Crystals (Wiley, New York, 1966).Google Scholar
[2] Cooper, J. A. Jr, phys. stat. sol. (a) 162, 305 (1997).Google Scholar
[3] Afanasev, V. V., Bassler, M., Pensl, G., Schulz, M. J. and Stein von Kamienski, E., J. Appl. Phys. 79, 3108 (1996).Google Scholar
[4] Choyke, W. J., Hamilton, D. R. and Patrick, L., Phys. Rev. 133, 1163 (1964).Google Scholar
[5] Ramsdell, L. S., Am. Mineralogist 32, 64 (1947).Google Scholar
[6] Starke, U., phys. stat. sol. (b) 202, 475 (1997).Google Scholar
[7] Starke, U., Bram, Ch., Steiner, P.-R., Hartner, W., Hammer, L., Heinz, K. and Müller, K., Appl. Surf. Sci. 89, 175 (1995).Google Scholar
[8] Tautz, F. S., Sloboshanin, S., Starke, U. and Schaefer, J. A., Surf. Sci. Lett. 470, L25–L31 (2000).Google Scholar
[9] Starke, U., Schardt, J. and Franke, M., Appl. Phys. A 65, 578 (1997).Google Scholar
[10] Heinz, K., Rep. Prog. Phys. 58, 637 (1995).Google Scholar
[11] Rous, P. J., Prog. Surf. Sci. 39, 3 (1992).Google Scholar
[12] Heinz, K., Döll, R. and Kottcke, M., Surf. Rev. Lett. 3, 1651 (1996).Google Scholar
[13] Kottcke, M. and Heinz, K., Surf. Sci. 376, 352 (1997).Google Scholar
[14] Pendry, J. B., J. Phys. C 13, 937 (1980).Google Scholar
[15] Reuter, K., Bernhardt, J., Wedler, H., Schardt, J., Starke, U. and Heinz, K., Phys. Rev. Lett. 79, 4818 (1997).Google Scholar
[16] Seubert, A., Bernhardt, J., Nerding, M., Starke, U. and Heinz, K., Surf. Sci. 454–456, 45 (2000).Google Scholar
[17] Schardt, J., Bram, Ch., Müller, S., Starke, U., Heinz, K. and Müller, K., Surf. Sci. 337, 232 (1995).Google Scholar
[18] Starke, U., Bernhardt, J., Franke, M., Schardt, J. and Heinz, K., Diam. Rel. Mat 6, 1349 (1997).Google Scholar
[19] Schardt, J., Bernhardt, J., Starke, U. and Heinz, K., Surf. Rev. and Lett. 5, 181 (1998).Google Scholar
[20] Hollering, M., Bernhardt, J., Schardt, J., Ziegler, A., Graupner, R., Mattern, B., Stampfl, A. P. J., Starke, U., Heinz, K. and Ley, L., Phys. Rev. B 58, 4992 (1998).Google Scholar
[21] Bernhardt, J., Schardt, J., Starke, U. and Heinz, K., Appl. Phys. Lett. 74, 1084 (1999).Google Scholar
[22] Starke, U., Schardt, J., Bernhardt, J. and Heinz, K., J. Vac. Sci. Technol. A 17, 1688 (1999).Google Scholar
[23] Sieber, N., Hollering, M., Ristein, J. and Ley, L., Materials Science Forum 338–342 391 (2000).Google Scholar
[24] Sieber, N., Mantel, B. F., Seyller, T., Ristein, J., Ley, L., Heller, T., Batchelor, D. R. and Schmeisser, D., Appl. Phys. Lett. 78 (2001) 1216.Google Scholar
[25] Köhler, U., priv. communication.Google Scholar
[26] Hornetz, B., Michel, H.-J. and Halbritter, J., J. Mater. Res. 9, 3088 (1994).Google Scholar
[27] Önneby, C. and Pantano, C. G., J. Vac. Sci. Technol. A 15, 1097 (1997).Google Scholar
[28] Gölz, A., Lucovsky, G., Koh, K., Wolfe, D., Niimi, H. and Kurz, H., J. Vac. Sci. Technol. B 15 1097 (1997).Google Scholar
[29] Bernhardt, J., Nerding, M., Starke, U. and Heinz, K., Mat. Sci. Eng. B 61–62, 206 (1999).Google Scholar
[30] Bernhardt, J., Franke, M., Starke, U. and Heinz, K., to be published.Google Scholar
[31] Starke, U., Schardt, J., Bernhardt, J., Franke, M., Reuter, K., Wedler, H., Heinz, K., Furthmüller, J., Käckell, P. and Bechstedt, F., Phys. Rev. Lett. 80, 758 (1998).Google Scholar
[32] Schardt, J., Bernhardt, J., Starke, U. and Heinz, K., Phys. Rev. B 62 10335 (2000).Google Scholar
[33] Kaplan, R., Surf. Sci. 215, 111 (1989).Google Scholar
[34] Kulakov, M. A., Henn, G. and Bullemer, B., Surf. Sci. 346, 49 (1996).Google Scholar
[35] Saldin, D. K. and De, P. L. Andres, Phys. Rev. Lett. 64, 1270 (1990).Google Scholar
[36] Heinz, K., Starke, U. and Bernhardt, J., Prog. Surf. Sci. 64 163 (2000).Google Scholar
[37] Reuter, K., Schardt, J., Bernhardt, J., Wedler, H., Starke, U. and Heinz, K., Phys. Rev. B 58 10806 (1998).Google Scholar
[38] Furthmüller, J., Käckel, P., Bechstedt, F., Fissel, A., Pfenninghaus, K., Schröter, B. and Richter, W., J. Electron. Mater. 27 848 (1998).Google Scholar
[39] Kimoto, T., Itoh, A. and Matsunami, H., J. Appl. Phys. 81, 3494 (1997).Google Scholar
[40] Tanaka, S., Kern, R. S. and Davis, R. F., Appl. Phys. Lett. 65, 2851 (1994).Google Scholar
[41] Fissel, A., Schröter, B. and Richter, W., Appl. Phys. Lett. 66, 3182 (1995).Google Scholar
[42] Owman, F. and Martensson, P., Surf. Sci. Lett. 330, L639 (1995).Google Scholar
[43] Starke, U., Schardt, J., Bernhardt, J., Franke, M. and Heinz, K., Phys. Rev. Lett. 82, 2107 (1999).Google Scholar
[44] Coati, A., Sauvage-Simkin, M., Garreau, Y., Pinchaux, R., Argunova, T. and Aïd, K., Phys. Rev. B 59, 12224 (1999).Google Scholar
[45] Bechstedt, F., Käckell, P., Zywietz, A., Karch, K., Adolph, B., Tenelsen, D. and Furthmüller, J., Phys. stat. sol. (b) 202, 35 (1997).Google Scholar
[46] Northrup, J. E. and Neugebauer, J., Phys. Rev. B 52, R17001 (1995).Google Scholar
[47] Pollmann, J., Krüger, P. and Sabisch, M., Phys. stat. sol. (b) 202, 421 (1997).Google Scholar
[48] Northrup, J. E. and Neugebauer, J., Phys. Rev. B 57, R4230 (1998).Google Scholar
[49] Johansson, L. I., Owman, F. and Martensson, P., Surf. Sci. Lett. 360, L478 (1996); L483 (1996).Google Scholar
[50] Themlin, J.-M., Forbeaux, I., Langlais, V., Belkhir, H. and Debever, J.-M., Europhys. Lett. 39, 61 (1997).Google Scholar
[51] Ramachandran, V. and Feenstra, R. M., Phys. Rev. Lett. 82 1000 (1999).Google Scholar
[52] Li, L., Hasegawa, Y., Sakurai, T. and Tsong, I. S. T., J. Appl. Phys. 80, 2524 (1996).Google Scholar
[53] Badziag, P., Surf. Sci. 337, 1 (1995).Google Scholar
[54] Bernhardt, J., Seubert, A., Schardt, J., Starke, U. and Heinz, K., to be published.Google Scholar
[55] Seubert, A., Saldin, D.K., Bernhardt, J., Starke, U. and Heinz, K., J. Phys. Condens. Mat. 12, 5527 (2000).Google Scholar