Article contents
Recycled HDPE-tetrapack composites. Isothermal crystallization, light scattering and mechanical properties
Published online by Cambridge University Press: 01 March 2013
Abstract
In this research the thermal and mechanical properties of composites based on recycled high-density polyethylene (HDPE) and recycled Tetrapak have been investigated. The matrix and filler are recovered from landfills. Multicolor HDPE mixtures, with varying concentration of tetrapack flakes, are hot pressed, as well as single color HDPE flakes. Previous studies determine that the nature of the pigment (organics vs. inorganics) strongly influence the mechanical behavior of multicolor HDPE-tetrapack composites. Thus, this research focuses on single color HDPE hot pressed plaques. The kinetics of crystallization under isothermal conditions is determined by differential scanning calorimetry (DSC). The results show that the crystallization kinetics obeys the Avrami theory, and that the Avrami exponent is 1, irrespective of the pigment in use. Small-angle light scattering is applied to investigate the internal structure of the pigmented HDPE. SALS patterns show that the samples exhibited oriented morphologies. However, after melting and slow cooling under pressure the samples exhibit an isotropic morphology. This is confirmed by polarized optical microscopy. Mechanical properties such as Young’s modulus, yield stress and ultimate tensile stress are obtained under uniaxial tensile deformation at room temperature. For the single color HDPE plaques the Young’s modulus is reduced (after melting), suggesting that the anisotropic molecular chains contribute to the higher value of Young’s modulus.
Keywords
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 2013
References
REFERENCES
- 4
- Cited by