Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-01T01:11:38.169Z Has data issue: false hasContentIssue false

Redesign of Carbon Materials for Novel Storage, Mechanical and Optical Properties

Published online by Cambridge University Press:  22 August 2012

Stefano Leoni
Affiliation:
Technische Universität Dresden, Institut für Physikalische Chemie, 01062 Dresden, Germany
Igor A. Baburin
Affiliation:
Technische Universität Dresden, Institut für Physikalische Chemie, 01062 Dresden, Germany
S. E. Boulfelfel
Affiliation:
Stony Brook University, Department of Geosciences, New York 11794-2100, USA
D. Selli
Affiliation:
Technische Universität Dresden, Institut für Physikalische Chemie, 01062 Dresden, Germany
Get access

Abstract

We revisit the polymorphism of carbon along two directions. First, we discover novel polymorphs in the vicinity of graphite, with outstanding optical and mechanical properties. Using numerical methods and graph-theoretical tools, we find as many as 4 novel superhard and transparent polymorphs, with great technological potential. Second, scaling up a model of rod packing to carbon nanotube (CNT) scaffoldings, we discover that such complex assemblies of CNTs are outstanding adsorbers of hydrogen, capable of reaching the DOE target (~6.0 wt% at ambient conditions). Along this line, we highlight novel paradigms for revisiting carbon, in view of remarkable qualities and superior properties.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Geim, A. K., Novoselov, K. S., Nature Materials 6, 183 (2007) .CrossRefGoogle Scholar
Selli, D., Baburin, I. A., martonak, R., Leoni, S., Phys. Rev. B 84, 161411(R) (2011).CrossRefGoogle Scholar
Boulfelfel, S. E., Oganov, A., Leoni, S., Scientific Reports 2, 471 (2012).CrossRefGoogle Scholar
Assfour, B., Leoni, S., Seifert, G., Baburin, I. A., Advanced Materials 23, 1237 (2011).CrossRefGoogle Scholar
Utsumi, W. and Yagi, T., Science 252, 1542 (1991).Google Scholar
Oganov, A. R. and Glass, C. W., J. Chem. Phys. 124, 244704 (2006).CrossRefGoogle Scholar
Dimitrakakis, G. K., Tylianakis, E., Froudakis, G. E., Nano Lett. 8, 3166 (2008).CrossRefGoogle Scholar
Han, S. S., Mendoza-Cortés, J. L., Goddard, W. A., Chem. Soc. Rev. 38, 1460 (2009).CrossRefGoogle Scholar
Romo-Herrera, J. M., Terrones, M., Terrones, H., Dag, S., Meunier, V., Nano Lett. 7, 570 (2007).CrossRefGoogle Scholar
Martonak, R., Laio, A., and Parrinello, M., Phys. Rev. Lett. 90, 075503 (2003).CrossRefGoogle Scholar
Tersoff, J., Phys. Rev. B 39, 5566 (1989).CrossRefGoogle Scholar
Lippert, G., Hutter, J., and Parrinello, M., Mol. Phys. 92, 477 (1997).CrossRefGoogle Scholar
Blatov, V., IUCr CompComm Newsletter 7, 4 (2006).Google Scholar
Bolhuis, P. G., Dellago, C., Chandler, D., Faraday Discuss. 110, 421 (1998).CrossRefGoogle Scholar
O’Keeffe, M., Plévert, J., Teshima, Y., Watanabe, Y., Ogama, T., Acta Crystallogr. Sect. A 57, 110 (2001).CrossRefGoogle Scholar
Seifert, G., Porezag, D., Frauenheim, T., Int. J. Quantum Chem. 58, 185 (1996).3.0.CO;2-U>CrossRefGoogle Scholar
Assfour, B., Seifert, G., Int. J. Hydrogen Energy 34, 8135 (2009).CrossRefGoogle Scholar
Zhu, Q., Oganov, A. R., SalvadÓ, M. A., Pertierra, P., and Lyakhov, A. O., Phys. Rev. B 83, 193410 (2011).CrossRefGoogle Scholar