Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-28T13:56:42.631Z Has data issue: false hasContentIssue false

Relationship Between Graded Layer Structures and Defects in Silicon-Germanium Virtual Substrates

Published online by Cambridge University Press:  17 March 2011

Kazuki Mizushima
Affiliation:
Central Research Institute, Mitsubishi Materials Corporation, 1-297 Kitabukuro-cho, Omiya, Saitama 330-8508, Japan
Ichiro Shiono
Affiliation:
Central Research Institute, Mitsubishi Materials Corporation, 1-297 Kitabukuro-cho, Omiya, Saitama 330-8508, Japan
Kenji Yamaguchi
Affiliation:
Central Research Institute, Mitsubishi Materials Corporation, 1-297 Kitabukuro-cho, Omiya, Saitama 330-8508, Japan
Naoki Muraki
Affiliation:
Mitsubishi Materials Silicon Corporation, 314 Nishisangao, Noda, Chiba 278-0051, Japan
Get access

Abstract

Silicon-germanium virtual substrates have been synthesized by low-pressure chemical vapor deposition. We obtained threading dislocation densities ranging from 105 to 106 cm−2, surface roughness ranging from 1.5 to 4 nm, and also cross-hatch pattern densities, depending on the grading rate and top layer germanium composition. For the typical sample, which has a linear-graded structure with a grading rate of 20%/[µm, and germanium composition of 30 % at the top layer, we obtained dislocation densities of about 106 cm−2 and root mean squared surface roughness of about 3 nm. The obtained dislocation densities are equivalent with the virtual substrates synthesized by ultra-high vacuum system. On the other hand the surface roughness is superior to the typical reported values. In this study three kinds of structures, i.e. linear-graded, stepwise, and graded-step structures, were considered. We found the defects are effectively reduced by introduction of an optimum number of steps in the graded layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Mii, Y.-J., Xie, Y.-H., Fitzgerald, E.A., Monroe, D., Thiel, F.A., Weir, B.E., and Feldman, L.C., Appl. Phys. Lett. 59, 1611 (1991).Google Scholar
2. Fitzgerald, E.A., Xie, Y.-H., Green, M.L., Brasen, D., Kortan, A.R., Michel, J., Mii, Y.-J, and Weir, B.E., Appl. Phys. Lett. 59, 811 (1991).Google Scholar
3. Abstreiter, G., Brugger, H., Wolf, T., Jorke, H., and Herzog, H.J., Phys. Rev. Lett. 54, 2441 (1985).Google Scholar
4. Ismail, K., Meyerson, B.S., and Wang, P.J., Appl. Phys. Lett. 58, 2117 (1991).Google Scholar
5. LeGoues, F.K., Meyerson, B.S., and Morar, J.F., Phys. Rev. Lett. 66, 2903 (1991).Google Scholar
6. Fitzgerald, E.A., , Y.-H, , Xie, Monroe, D., Silverman, P.J., Kuo, J.M., Kortan, A.R., Thiel, F.A., and Weir, B.E., J. Vac. Sci. & Technol. B 10, 1807 (1992).Google Scholar
7. Mooney, P.M., Jordan-Sweet, J.L., Ismail, K., Chu, J. O., Feenstra, R.M., and LeGoues, F.K., Appl. Phys. Lett. 67, 2373 (1995).Google Scholar
8. LeGoues, F.K., Meyerson, B.S., and Morar, J.F., Phys. Rev. Lett. 66, 2903 (1991).Google Scholar
9. Samavedam, S.B. and Fitzgerald, E.A., J. Appl. Phys. 81, 3108 (1997).Google Scholar
10. Chen, H., Guo, L.W., Cui, Q., Hu, Q., Huang, Q., and Zhou, J.M., J. Appl. Phys. 79, 1167 (1996).Google Scholar
11. Powell, A.R., Iyer, S.S., and LeGoues, F.K., Appl. Phys. Lett. 64, 1856 (1994).Google Scholar
12. Liu, J.L., Moore, C.D., U'Ren, G.D., Luo, Y.H., Lu, Y., Jin, G., Thomas, S.G., Goorsky, M.S., and Wang, K.L., Appl. Phys. Lett. 75, 1586 (1999).Google Scholar
13. Mantl, S., Hollaender, B., Liedtke, R., Mesters, A., Herzog, H.J., Kibbel, H., and Hackbarth, T., Nucl. Instrum. & Methods B 147, 29 (1999).Google Scholar
14. Dismukes, J.P., Ekstrom, L., and Paff, R.J., J. Phys. Chem. 68, 3021 (1964).Google Scholar