Article contents
The Relationship Between Near-Surface Mechanical Properties, Loading Rate And Surface Chemistry
Published online by Cambridge University Press: 10 February 2011
Abstract
The presence of thin surface films and adsorbate layers on both metals and ceramics can cause dramatic changes in the mechanical response of the material. A similar, related, variation in tribological properties has also been observed. Though the importance of surface effects is well known and widely documented, the exact physical and chemical mechanisms that are operating remain poorly understood. The development of point probe techniques now permits the examination of mechanical and tribological properties on the same length scale as the surface films. Recently, the utilization of these testing techniques has provided a clear insight into the mechanical processes which are operating on the atomic scale. The nanoindentation results presented here show that the mechanical deformation of an individual nano-contact is a highly dynamic phenomena in which the tip-momentum on contact, as well as the loading rate during the indentation, dictate the observed mechanical properties of the material. These results indicate that the initiation of plastic deformation is dependent on the stability of atomic-size surface asperities which can be deformed irreversibly by the high stresses generated during the initial contact. Additionally, the generation of dislocations and the presence of discontinuities in the loading curve are shown to depend upon the loading rate. More significantly, it has been found that modifying the surface chemistry can cause dramatic changes in both the mode of deformation and the time-dependence of nano-scale mechanical properties. The principal conclusion that can be drawn is that the high stresses which operate over short distances make time and temperature dependent phenomena, such as diffusion and the dissipation of energy via phonons, of vital importance in determining the near-surface mechanical properties of a material. Such effects are further magnified in tribological processes where normal and tangential loading of the surface leads to the repeated making and breaking of nano-asperity contacts.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1998
References
REFERENCES
- 7
- Cited by