Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-15T06:48:37.588Z Has data issue: false hasContentIssue false

Relaxation of Capped Strained Layers Via the Formation of Microtwins

Published online by Cambridge University Press:  25 February 2011

D. M. Hwang
Affiliation:
Bellcore, Red Bank, New Jersey 07701–7040, USA
S. A. Schwarz
Affiliation:
Bellcore, Red Bank, New Jersey 07701–7040, USA
T. S. Ravi
Affiliation:
Bellcore, Red Bank, New Jersey 07701–7040, USA
R. Bhat
Affiliation:
Bellcore, Red Bank, New Jersey 07701–7040, USA
C. Y. Chen
Affiliation:
Bellcore, Red Bank, New Jersey 07701–7040, USA
Get access

Abstract

A new strain relief mechanism in epitaxial layers of lattice mismatched face-centered cubic materials is identified using transmission electron microscopy. For an embedded strained layer near its critical thickness, we find that the primary strain-relaxation channel is through the formation of microtwins. A monolayer microtwin (a stacking fault) spanning the strained layer can form when a pair of partial dislocations of the <112> /6 type with antiparallel Burgers vectors are generated inside the strained layer and glide to the opposite interfaces. A series of partial dislocations can result in a microtwin several monolayers thick. For embedded strained layers of materials with small stacking fault energy, the formation of partial dislocation pairs is an energetically-favored strain relaxation channel, as compared to the formation of perfect dislocation pairs in the conventional double-kink model. Therefore, the mechanism proposed here poses fundamental limitations for strained layer device structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Schwarz, S. A., Mei, P., Venkatesan, T., Bhat, R., Hwang, D. M., Schwartz, C. L., Koza, M., Nazar, L., and Skromme, B. J., Appl. Phys. Lett. 53, 1051 (1988).Google Scholar
[2] Hwang, D. M., Schwarz, S. A., Mei, P., Bhat, R., Venkatesan, T., Nazar, L., and Schwartz, C. L., Appl. Phys. Lett. 54, 1160 (1989).Google Scholar
[3] Schwarz, S. A., Mei, P., Hwang, D. M., Schwartz, C. L., Venkatesan, T., Palmstrom, C. J., Stoffel, N. G., and Bhat, R., Mat. Res. Soc. Symp. Proc. 144, 233 (1989).Google Scholar
[4] Schwarz, S. A., Hwang, D. M., Mei, P., Schwartz, C. L., Werner, J., Stoffel, N. G., Bhat, R., Chen, C. Y., Ravi, T. S., and Koza, M., J. Vac. Sci. Technol. A8, 2997 (1990).Google Scholar
[5] Matthews, J. W. and Blakeslee, A. E., J. Crys. Gr. 27, 118 (1974) and 29, 273 (1975).Google Scholar
[6] Matthews, J. W., J. Vac. Sci. Technol. 12. 126 (1975).Google Scholar
[7] Matthews, J. W., Mader, S., and Light, T. B., J. Crys. Gr. 32, 265 (1976).Google Scholar
[8] People, R. and Bean, J. C., Appl. Phys. Lett. 47, 322 (1985).Google Scholar
[9] Dodson, B. W. and Tsao, J. Y., Appl. Phys. Lett. 51, 1325 (1987), 52, 852 (1988), and 53, 848 (1988).Google Scholar
[10] Dodson, B. W., Appl. Phys. Lett. 53, 394 (1988).Google Scholar
[11] Hirth, J. P. and Lothe, J., Theory of Dislocations (Wiley, New York, 1982), p. 308 and p. 315.Google Scholar