Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T05:30:24.421Z Has data issue: false hasContentIssue false

Relaxation Processes at High Temperature in TiAl-Nb-Mo Intermetallics

Published online by Cambridge University Press:  10 December 2012

Pablo Simas
Affiliation:
Física Materia Condensada, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, 48080 Bilbao, Spain.
Thomas Schmoelzer
Affiliation:
Department of Physical Metallurgy and Materials Testing, Montanuniversitaet Leoben, Franz-Josef-Str. 18, A-8700 Leoben, Austria.
Svea Mayer
Affiliation:
Department of Physical Metallurgy and Materials Testing, Montanuniversitaet Leoben, Franz-Josef-Str. 18, A-8700 Leoben, Austria.
Maria L. Nó
Affiliation:
Física Aplicada II, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, 48080 Bilbao, Spain.
Helmut Clemens
Affiliation:
Department of Physical Metallurgy and Materials Testing, Montanuniversitaet Leoben, Franz-Josef-Str. 18, A-8700 Leoben, Austria.
Jose San Juan
Affiliation:
Física Materia Condensada, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, 48080 Bilbao, Spain.
Get access

Abstract

In the last decades there was a growing interest in developing new light-weight intermetallic alloys, which are able to substitute the heavy superalloys at a certain temperature range. At present a new Ti-Al-Nb-Mo family, called TNM™ alloys, is being optimized to fulfill the challenging requirements. The aim of the present work was to study the microscopic mechanisms of defect mobility at high temperature in TNM alloys in order to contribute to the understanding of their influence on the mechanical properties and hence to promote the further optimization of these alloys. Mechanical spectroscopy has been used to study the internal friction and the dynamic modulus up to 1460 K of a TNM alloy under different thermal treatments. These measurements allow to follow the microstructural evolution during in-situ thermal treatments. A relaxation process has been observed at about 1050 K and was characterized as a function of temperature and frequency in order to obtain the activation parameters of the responsible mechanism. In particular, the activation enthalpy has been determined to be H= 3 eV. The results are discussed and an atomic mechanism is proposed to explain the observed relaxation process.

Type
Articles
Copyright
Copyright © Materials Research Society 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Gamma Titanium Alumindes 1999, edited by Kim, Y.W., Dimiduk, D.M., and Loretto, M.H. (TMS, Warrendale, PA, 1999).Google Scholar
Titanium and Titanium alloys, edited by Leyens, C., Peters, M. (Wiley-VCH, Weinheim, Germany, 2003).CrossRefGoogle Scholar
Gamma Titanium Alumindes 2003, edited by Kim, Y.W., Clemens, H. and Rosemberg, A.H. (TMS, Warrendale, PA, 2003).Google Scholar
Appel, F. and Wagner, R., Mater. Sci. Eng. R 22, 187 (1998).CrossRefGoogle Scholar
Kestler, H. and Clemens, H., in Ref. (2), (2003), p 351–392.Google Scholar
Clemens, H., Wallgram, W., Kremmer, S., Güther, V., Otto, A. and Bartels, A., Adv. Eng. Mater. 10, 707 (2008).CrossRefGoogle Scholar
Appel, F. and Oehring, M., in Ref. (2), (2003) p 89–152.Google Scholar
Herzig, C., Przeorski, T., Friesel, M., Hisker, F. and Divinski, S., Intermetallics 9, 461 (2001).CrossRefGoogle Scholar
Takeyama, M. and Kobayashi, S., Intermetallics 13, 989 (2005).CrossRefGoogle Scholar
Imayev, R.M., Imayev, V.M., Oehring, M. and Appel, F., Intermetallics 15, 451 (2007).CrossRefGoogle Scholar
Zhang, Z., Leonard, K.J., Dimiduk, D.M. and Vasudevan, V.K., Structural Intermetallics 2001. (TMS, Warrendale, PA, 2001) p. 515.Google Scholar
Kim, Y.W. and Dimiduk, D.M., Structural Intermetallics 2001. (TMS, Warrendale, PA, 2001) p. 625.Google Scholar
Clemens, H., Boeck, B., Wallgram, W., Schmoelzer, T., Droessler, L.M., Zickler, G.A., Leitner, H. and Otto, A., (Mater. Res. Soc. Symp. Proc. Volume 1128, Warrendale, PA, 2009) p.115.Google Scholar
Watson, I.J., Liss, K.D., Clemens, H., Wallgram, W., Schmoelzer, T., Hansen, T.C. and Reid, M., Adv. Eng. Mater. 11, 932 (2009).CrossRefGoogle Scholar
Clemens, H., Chladil, H.F., Wallgram, W., Zickler, G.A., Gerlig, R., Liss, K.D., Kemmer, S., Güther, V. and Smarsly, W., Intermetallics 16, 827 (2008).CrossRefGoogle Scholar
Droessler, L.M., Schmoelzer, T., Wallgram, W., Cha, L., Das, G. and Clemens, H., (Mater. Res. Soc. Symp. Proc. Volume 1128, Warrendale, PA, 2009) p. U03–08.Google Scholar
Schmoelzer, T., Liss, K.D., Zickler, G.A., Watson, I.J., Droessler, L.M., Wallgram, W., Buslaps, T., Studer, A. and Clemens, H., Intermetallics 18, 1544 (2010).CrossRefGoogle Scholar
Nowick, A.S. and Berry, B.S., Anelastic Relaxation in Crystalline Solids. (Academic Press, New York, 1972).Google Scholar
Mechanical Spectroscopy Q-1 2001, edited by Schaller, R., Fantozzi, G. and Gremaud, G. G. (Trans Tech Publications, Uetikon-Zuerich (SW), 2001).Google Scholar
San Juan, J., Mater. Sci. Forum 366-368, 32 (2001).10.4028/www.scientific.net/MSF.366-368.32CrossRefGoogle Scholar
Güther, V., Otto, J., Klose, J., Rothe, C., Clemens, H., Kachler, W., Winter, S. and Kremmer, S., Structural Intermetallics for Elevated Temperature Applications, edited by Kim, Y.W., Morris, D., Yang, R. and Leyens, C.. (TMS, Warrendale, PA, 2008), p. 249.Google Scholar
Güther, V., Rothe, C., Vinter, S. and Clemens, H., BHM 155, 325 (2010).Google Scholar
Simas, P., San Juan, J., Schaller, R. and , M. L., Key. Eng. Mat. 423, 89 (2009).CrossRefGoogle Scholar
Simas, P., PhD Thesis, University of the Basque Country, (2012).Google Scholar
Cha, L., Schmoelzer, T., Zhang, Z., Mayer, S., Clemens, H., Staron, P. and Dehm, G., Adv. Eng. Mater. 14, 299 (2012).CrossRefGoogle Scholar
San Juan, J., Simas, P., Schmoelzer, T., Mayer, S., Clemens, H. and , M.L., to be published.Google Scholar
Simas, P., Schmoelzer, T., , M.L., Clemens, H. and San Juan, J., (Mater. Res. Soc. Symp. Proc. Volume 1295, Warrendale, PA, 2011), p. 139.Google Scholar
Weller, M., Haneczok, G., Kestler, H. and Clemens, H., Mater. Sci. Eng. A 370, 234 (2004).CrossRefGoogle Scholar
Perez-Bravo, M., , M.L., Madariaga, I., Ostolaza, K. and San Juan, J., in Gamma Titanium Aluminides 2003, edited by Kim, Y.W., Clemens, H. and Rosemberg, A.H.. (TMS, Warrendale, PA, USA, 2003) p 451.Google Scholar
Perez-Bravo, M., , M.L., Madariaga, I., Ostolaza, K. and San Juan, J., Mater. Sci. Eng. A 370, 240 (2004).CrossRefGoogle Scholar
Weller, M., Clemens, H., Haneczok, G., Dehm, G., Bartels, A., Bystrzanowski, S., Gerling, R. and Arzt, E., Phil. Mag. Letters 84, 383 (2004).CrossRefGoogle Scholar
Weller, M., Clemens, H. and Haneczok, G., Mater. Sci. Eng. A 442, 138 (2006).CrossRefGoogle Scholar
Wallgram, W., Schmoelzer, T., Cha, L., Das, G., Güther, V., and Clemens, H., Int. J. Mat. Res. 100, 1021 (2009).CrossRefGoogle Scholar
Rusing, J. and Herzig, C., Intermetallics 4, 647 (1996).CrossRefGoogle Scholar
Mishin, Y. and Herzig, C., Acta Mater. 48, 589 (2000).CrossRefGoogle Scholar