Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-10T14:32:56.586Z Has data issue: false hasContentIssue false

Reprocessing Silicon Carbide Inert Matrix Fuel by Molten Salt Corrosion

Published online by Cambridge University Press:  31 January 2011

Ting Cheng
Affiliation:
cyt5015@ufl.edu, university of florida, MSE, gainesville, United States
Ronald Baney
Affiliation:
rbane@mse.ufl.edu, Univeristy of Florida, MSE, Gainesville, Florida, United States
James Tulenko
Affiliation:
tulenko@ufl.edu, Univeristy of Florida, Gainesville, Florida, United States
Get access

Abstract

Silicon carbide is one of the prime matrix material candidates for inert matrix fuels (IMF) which are being designed to reduce plutonium and long half-life actinide inventories through transmutation. Since complete transmutation is impractical in a single in-core run, reprocessing the inert matrix fuels becomes necessary. The current reprocessing techniques of many inert matrix materials involve dissolution of spent fuels in acidic aqueous solutions. However, SiC cannot be dissolved by that process. Thus, new reprocessing techniques are required.

This paper discusses a possible way for separating transuranic (actinide) species from a bulk silicon carbide (SiC) matrix utilizing molten carbonates. Bulk reaction-bonded SiC and SiC powder (1 μm) were corroded at high temperatures (above 850 °C) in molten carbonates (K2CO3 and Na2CO3) in an air atmosphere to form water soluble silicates. Separation of Ceria (used as a surrogate for the plutonium fissile fuel) was achieved by dissolving the silicates in boiling water and leaving behind the solid ceria (CeO2).

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Degueldre, C. Paratte, J.M. J. Nucl. Mater. 274(1999) 16.Google Scholar
2. Naslain, R. Comp. Sci. Tech. 64(2004) 155170.Google Scholar
3. Matzke, H. Rondinella, V.V. and Wiss, T. J. Nucl Mater. 274(1999) 4753.Google Scholar
4. Bourg, S. F. Peron and Lacquement, J. J. Nucl Mater. 360(2007) 5863.Google Scholar
5. Pall, U. B. MacDonald, C. J. Chiang, E. Chernicoff, W. C. Chou, K. C. Molecke, M. A. Metallug, D. Mater. Trans. 32(2001) 11191128.Google Scholar
6. Park, Y. S. Sohnb, H. Y. and Butt, D. P. J. Nucl. Mater. 280(2000) 285294.Google Scholar
7. Tatsumi, A. Kazuya, I. Kazuhiro, Y. Satoshi, T. Yaohiro, I. J. Alloys Compd. 394(2005) 271276.Google Scholar
8. Jacobson, M. S. J. Amer. Ceram. Soc. 69(1986) 7482.Google Scholar
9. Allendorf, M. D. and Spear, K. E. J. Electrochem. Soc. 148(2001) B59–B67.Google Scholar
10. Lee, S. Y. Park, Y. S. Hsu, P. and McNallan, M. J. J. Amer. Ceram. Soc. 86(2003) 12921298.Google Scholar
11. Kosminski, A. Ross, D.P. and Agnew, J.B. Fuel Proc. Tech. 87(2006) 1037–49.Google Scholar
12. Jones, A. R. Winter, R. Greaves, G. N. and Smith, I. H. J. Phys. Chem. 109(2005) 23154–61.Google Scholar
13. Dobson, D. P. Jones, A. P. Rabe, R. Sekine, T. Kurita, K. Taniguchi, T. Kondo, T. Kato, T. Shimomura, O. Urakawa, S. Earth Planet. Sci. Lett. 143(1996) 207215.Google Scholar
14. Mohamedi, M. Hisamitsu, Y. Uchida, I. J. Appl. Electrochem. 32(2002) 111117.Google Scholar
15. Volkovich, V. Griffiths, T. R. Wilson, P. D. J. Chem. Soc. 92,(1996) 50595065.Google Scholar