Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-15T01:13:12.646Z Has data issue: false hasContentIssue false

Reptation in Artificial Tubes and the Corset Effect of Confined Polymer Dynamics

Published online by Cambridge University Press:  01 February 2011

Rainer Kimmich
Affiliation:
Sektion Kernresonanzspektroskopie, Universität Ulm, Albert-Einstein-Allee 11, 89069 Ulm, Germany
Nail Fatkullin
Affiliation:
Kazan State University, Department of Physics, Kazan 420008, Tatarstan, Russia
Elmar Fischer
Affiliation:
Sektion Kernresonanzspektroskopie, Universität Ulm, Albert-Einstein-Allee 11, 89069 Ulm, Germany
Carlos Mattea
Affiliation:
Sektion Kernresonanzspektroskopie, Universität Ulm, Albert-Einstein-Allee 11, 89069 Ulm, Germany
Uwe Beginn
Affiliation:
RWTH-Aachen, DWI / ITMC / TexMC, Worringerweg 1, 52056 Aachen, Germany
Get access

Abstract

A spinodal demixing technique was employed for the preparation of linear poly(ethylene oxide) (PEO) confined to nanoscopic strands which in turn are embedded in a quasi-solid and impenetrable methacrylate matrix. Both the molecular weight of the PEO and the mean diameter of the strands are variable to a certain degree. Chain dynamics of the PEO in the molten state was examined with the aid of field-gradient NMR diffusometry (time scale: 10−2 s … 100 s) and field-cycling NMR relaxometry (time scale: 10−9 s … 10−4 s). The dominating mechanism for translational displacements probed in the nanoscopic strands by either technique is shown to be reptation. A corresponding evaluation formalism for NMR diffusometry is presented. It permits the estimation of the mean PEO strand diameter. Depending on the chemical composition of the matrix, the diameters range from 9 to 58 nm. The strands were visualized by electron microscopy. On the time scale of spin-lattice relaxation time measurements, the frequency dependence signature of reptation, that is T1 ∝ ν3/4, showed up in all samples. A “tube” diameter of only 0.6 nm was concluded to be effective on this time scale even when the strand diameter was larger than the radius of gyration of the PEO random coils. This “corset effect” is traced back to the lack of the local fluctuation capacity of the free volume in nanoscopic confinements. The confinement dimension is estimated at which the cross-over from “confined” to “bulk” chain dynamics is expected.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Doi, M. and Edwards, S. F., “The Theory of Polymer Dynamics” (Clarendon, Oxford, 1986).Google Scholar
[2] Beginn, U., Fischer, E., Pieper, T., Mellinger, F., Kimmich, R., and Möllerı, M., J. Polym. Sci.: Part A: Polym. Chem. 38, 2041 (2000).Google Scholar
[3] Fischer, E., Kimmich, R., Beginn, U., Möller, M., and Fatkullin, N., Phys. Rev. E 59, 4079 (1999).Google Scholar
[4] Fischer, E., Beginn, U., Fatkullin, N., and Kimmich, R., Macromolecules, in press.Google Scholar
[5] Ardelean, I. and Kimmich, R., Annu. Rep. NMR Spectr. 49, 43 (2003).Google Scholar
[6] Kimmich, R., “NMR Tomography, Diffusometry, Relaxometry” (Springer, Berlin, 1997).Google Scholar
[7] Kimmich, R., Seitter, R.-O., Beginn, U., Möller, M., and Fatkullin, N., Chem. Phys. Letters 307, 147 (1999).Google Scholar
[8] Kimmich, R., Fatkullin, N., Seitter, R.-O., Fischer, E., Beginn, U., and Möller, M., Macromol. Symp. 146, 109 (1999).Google Scholar
[9] Kimmich, R. and Fatkullin, N., Advan. Polym. Sci. 170 (2004).Google Scholar
[10] Fatkullin, N. and Kimmich, R., Phys. Rev. E 52, 3273 (1995).Google Scholar
[11] Graessley, W. W. and Edwards, S. F., Polymer 22, 1329 (1981).Google Scholar
[12] Smith, G. D., Yoon, D. Y., Jaffe, R. L., Colby, R. H., Krishnamorti, R., and Fetters, L. J., Macromolecules 29, 3462 (1996).Google Scholar
[13] Mattea, C., Fatkullin, N., Fischer, E., Beginn, U., Anoardo, E., Kroutieva, M., and Kimmich, R., Appl. Magn. Reson., in press.Google Scholar
[14] Khazanovich, T. N., Polym. Sci. USSR 4, 727 (1963).Google Scholar
[15] Ullman, R., J. Chem. Phys. 43, 3161 (1965).Google Scholar
[16] Fatkullin, N. and Kimmich, R., J. Chem. Phys. 101, 822 (1994).Google Scholar
[17] Schweizer, K. S., J. Chem. Phys. 91, 5802 (1989).Google Scholar
[18] Denissov, A., Kroutieva, M., Fatkullin, N., and Kimmich, R., J. Chem. Phys. 116, 5217 (2002).Google Scholar
[19] de Gennes, P. G., J. Chem. Phys. 55, 572 (1971).Google Scholar
[20] Fatkullin, N., Kimmich, R., Fischer, E., Mattea, C., Beginn, U., Kroutieva, M., submitted for publication.Google Scholar