Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-15T01:19:39.097Z Has data issue: false hasContentIssue false

The Research and Development of Silicon-Germanium Thermoelements for Power Generation

Published online by Cambridge University Press:  15 February 2011

Fred D. Rosi*
Affiliation:
University of Virginia, Department of Materials Science, Charlottesville, Virginia
Get access

Abstract

On the 25th of August 1989, radio signals from the unmanned Voyager II spacecraft produced high resolution radio displays of the planet Neptune and its moon, Triton, on the monitors of Caltech's Jet Propulsion Laboratory. Thus ended the 12-year NASA Voyager I and II missions to the giant outer planets of our solar systems. Somewhat overlooked in the excitement over the impressive scientific findings from Voyager's epic planetary encounters was the power system aboard the spacecraft for data collection and signal transmission. This was the multi-hundred watt, radioisotope fueled thermoelectric generator using thermocouple modules made of Si-Ge alloys. The first section of this paper presents a historical review of the research program at the RCA Laboratories in Princeton, N.J. during the 4-year period required for the conception and development of Si-Ge thermoelements for power generation. This includes RCA's strategy in thermoelectric materials research from the viewpoint of device principles and requirements, scientific issues relating to the growth and thermoelectric characterization of Si-Ce alloys, and device feasibility studies. The performance of Si-Ge thermoelements in the power source of several space missions is also discussed. Finally, a perspective is presented on the research management of this remarkably successful program. The second section of the paper describes the results of more recent research on the thermoelectric properties of hot-pressed, sintered Si-Ge alloys and, in particular, the effects of grain size and additions of GaP. In the final section, consideration is given to future areas of research based, in part, on the results of the earlier studies of Si-Ge technology for thermoelectric power generation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lindenblad, N.E., Electrical Engr., V. 77, No. 9, 802 (1958).Google Scholar
2. Altenkirch, E., Phys. Z., V. 10, 560 (1909); Idem Phys. Z., V. 12, 920 (1911).Google Scholar
3. Ioffe, A.F., Semiconductor Thermoelements and Thermoelectric Cooling; London: Infosearch Ltd. (1957).Google Scholar
4. Goldsmid, H.J., Applications of Thermoelecticity, Methuen & Co. Ltd., London (1960).Google Scholar
5. Rappaport, P., IEEE Trans. on Broadcasting. BC–13: 8795 (1967).Google Scholar
6. Rosi, F.D., Hockings, E.F. and Lindenblad, N.E., Energy Conversion Issue, RCA Review (March 1961).Google Scholar
7. Leibfried, G. and Schlomann, E., Gott. Nachr., 2A, 71 (1954).Google Scholar
8. Sidles, P.H. and Danielson, G.C., Jnl. Appl. Phys., V. 25, 158 (1963).Google Scholar
9. Angstrom, A.J., Ann. Physik, V. 114, 513 (1961); Phil. Mag., V. 25, 130 (1963).Google Scholar
10. Wallace, D.C., Sidles, P.H. and Danielson, G.C., Bull. Am. Phys. Soc. Ser. II, V. 2, 339 (1957).Google Scholar
11. Pallister, P.R., J. Iron and Steel Inst. (London), V. 161, 87 (1949).Google Scholar
12. Cody, G.D., Abeles, B., Dismukes, J.P. and Rosi, F.D., Proc. of the IX Conf. on Thermoelectrics (March 19-21, 1990).Google Scholar
13. Abeles, B., Cody, G.D. and Beers, D.S., Jnl. Appl. Phys. V. 31, 1585 (1960).CrossRefGoogle Scholar
14. Powell, R.W., Proc. Roy. Soc., V. 51, 407 (1939).Google Scholar
15. Cody, G.D., Abeles, B. and Beers, D.S., Trans. Met. Soc. AIME, V. 221, 25 (1960).Google Scholar
16. Beers, D.S., Cody, G.D. and Abeles, B., Proc. Int. Conf. on Physics of Semiconductors at Exeter, England (July 1962).Google Scholar
17. Klemens, P.G., Thermal Conductivity and Lattice Vibrational Modes. Solid State Phys., V. 7, 1, Academic Press, Inc., N.Y.Google Scholar
18. Herman, F., Physics Today, V. 37, 56 (1984).Google Scholar
19. Steele, M.C. and Rosi, F.D., Jnl. Appl. Phys., V. 29, 1517, (1958).Google Scholar
20. Dismukes, J.P. and Ekstrom, L., Trans. AIME, V. 233, 672 (1965).Google Scholar
21. Chalmers, B., Principles of Solidification, Wiley & Sons, N.Y. (1964).Google Scholar
22. Ekstrom, L. and Dismukes, J.P., J. Phys. Chem. Solids, V. 27, 857 (1966).Google Scholar
23. Lifshitz, I.M. and Slyozov, V.V., J. Phys. Chem. Solids, V. 19, 35 (1961).Google Scholar
24. Abeles, B., Phys. Rev., V. 131, 1906 (1963).Google Scholar
25. Abeles, B., Beers, D.S., Cody, G.D. and Dismukes, J.P., Phys. Rev., V. 125, 44 (1962).Google Scholar
26. Klemens, P.G., Phys. Rev., V. 119, 507 (1960).CrossRefGoogle Scholar
27. Calloway, J., Phys. Rev., V. 113, 1046 (1959).Google Scholar
28. Calloway, J. and Baeyer, H.C. v., Phys. Rev., V. 122, 1149 (1960).Google Scholar
29. Steigmeier, E.F. and Kudman, I., Phys. Rev., V. 141, 767 (1966).Google Scholar
30. Dismukes, J.P., Ekstrom, L., Steigmeier, E.F., Kudman, I. and Beers, D.S., Jnl. Appl. Phys., V. 35, 2899 (1964).Google Scholar
31. Steigmeier, E.F. and Abeles, B., Proc. 7th Int. Conf. Physics of Semiconductors, Paris (1962); Indem. Phys. Rev., V. 136A, 1149 (1964).Google Scholar
32. Ziman, J.M., Electrons and Phonons, Clarenden, Oxford (1960).Google Scholar
33. Abeles, B. and Cohen, R.W., Jnl. Appl. Phys., V. 35, 247 (1964).Google Scholar
34. Cody, G.D. and Abeles, B., Patent, U.S., SN 3,279,954 (filed October 11, 1962).Google Scholar
35. Bennett, G.L., Nuclear Safety, V.22, No. 4, 433 (July-August 1981).Google Scholar
36. Caprarolas, L.J. and Helwig, W.J., RCA Engineer, V. 9, 16, Oct./Nov. (1963).Google Scholar
37. Bennett, G.L., Lombardo, J.J. and Rock, B.J., Jnl. Astronautical Sci., V. XXIX, No. 4, 321 (October-December 1981).Google Scholar
38. Kelly, C.E., Trans., 4th Symposium Space Nucl. Pwr. Sys., Albuquerque, N.M. (January 12-16, 1987).Google Scholar
39. Turi, J.A., Johnson, R.A., Hemler, R.J., Dick, P.J. and Carpenter, R.T., Conf. Nuclear Power Engineering in Space, Obninsk, USSR (May 15-18, 1990).Google Scholar
40. Slack, G.A., Solid State Physics, V. 34, 1 (1979).Google Scholar
41. Cahill, D.G. and Pohl, R.O., Solid State Comm., V. 70, No. 10, 927 (1989).Google Scholar
42. Goldsmid, H.J. and Penn, A.W., Phys. Lett., V. 27A, 523 (1968).Google Scholar
43. Rowe, D.M. and Bhandari, C.M., Modern Thermoelectrics, Reston Publishing Co., Reston, Virginia (1983).Google Scholar
44. Bhandari, C.M. and Rowe, D.M., Contemp. Phys., V. 21, 219 (1980).CrossRefGoogle Scholar
45. Bhandari, C.M. and Rowe, D.M., J. Phys. C: Solid State Phys., V. 11, 1787 (1978).Google Scholar
46. Rowe, D.M., Shukla, V. and Savvides, N., Nature, V. 290, No. 5809, 765 (April 30, 1981).Google Scholar
47. Lefever, R.A., McVay, G.L. and Baughman, R.J., Mater. Res. Bull., V. 9, 863 (1974).Google Scholar
48. Rowe, D.M. and Shukla, V.S., Jnl. Appl. Phys., V. 52, 12, 7421 (1981).Google Scholar
49. Vining, C.B., Jnl. Appl. Phys. (1991), to be published.Google Scholar
50. Smith, A., Comptes rendus of 7th Congress Phys. of Semic., Paris (1964) p. 393.Google Scholar
51. Seager, C.H., Ann. Rev. Mater. Sci., V. 15, 271 (1985).Google Scholar
52. Pisharody, P.K. and Garvey, L.P., Proc. 13th Intersociety Energy Conversion Engr. Conf., 1963 (1978).Google Scholar
53. Syncal Corp., Tech. Report on High Power Density Thermoeletric Module Design and Si-Ge/GaP Thermoelectric Materials Work, Los Alamos Contract, No. L28-1134H-1 (October 15, 1978).Google Scholar
54. Schock, A., Proc. Intersociety Energy Conv. Engr. Conf., V. 1, 327 (1981).Google Scholar
55. Schock, A., Proc. Intersociety Energy Conv. Engr. Conf., (1983).Google Scholar
56. Eck, M. and Mukunda, M., Proc. Intersociety Energy Cony. Engr. Conf. (1983).Google Scholar
57. Owusu-Sekyere, K., Jesser, W.A. and Rosi, F.D., Matls. Sci. and Engr., B, 231 (1989).Google Scholar
58. Vandersande, J.W., Wood, C. and Draper, S., Matls. Res. Soc. Symp. Proc., V. 97, 347 (1987).Google Scholar
59. Vandersande, J.W., Borshchevsky, A., Parker, J. and Wood, C., Proc. 25th Intersociety Energy Conv. Engr. Conf., V. 2, (August 1990).Google Scholar
60. RCA Laboratories Final Report, Thermoelectric Materials for Power Conversion, Contract No. Nobs. 88595 (1964).Google Scholar
61. McLane, G., Wood, C., Vandersande, J., Danielson, L. and Raag, V., Proc. of 6th Intern. Conf. on Thermoelectric Energy Conv., Univ. of Texas (March 1986) p. 1.Google Scholar
62. Rosi, F.D., Solid-State Electronics, V. 11, 833 (1968).Google Scholar
63. Hockings, E.F., Kudman, I., Seidel, T.E., Schmelz, E.M. and Steigmeier, E.F., Jnl. Appl. Phys., V. 37, 2879 (1966).CrossRefGoogle Scholar
64. Steigmeier, E.F. and Kudman, I., Phys. Rev., V. 141, 767 (1966).Google Scholar
65. Amith, A., Phys. Rev., V. 139, No. 5A, 1624 (1965).Google Scholar