No CrossRef data available.
Article contents
Resistless Patterning of Hydrogenated Amorphous Silicon Films
Published online by Cambridge University Press: 15 February 2011
Abstract
Practical methods for directly patterning hydrogenated amorphous silicon (a-Si:H) films have been developed. Direct patterning involves selectively oxidizing the hydrogen passivated a-Si:H surface or laser crystallization of the bulk. The oxide or polycrystalline layer formed in this way then becomes a mask for subsequent hydrogen plasma etching. Methods for selective oxidation of the a-Si:H surface have been extensively studied. Examination of the pattern generation threshold dose for excitation wavelengths from 248 to 633nm provides indirect evidence for electron-hole recombination breaking of the silicon-hydrogen bond. An additional hydrogen removal mechanism was observed whereby simple proximity of a tapered fiber optic probe less than 30nm from the sample surface resulted in pattern generation. Patterns were generated in both intrinsic and doped a-Si:H films by several means, including contact printing with a mask aligner, in situ projection lithography with an excimer laser, and direct writing with a near-field scanning optical microscope (NSOM). Direct patterning of a-Si:H films has a wide range of potential applications. We have demonstrated a-Si:H as an in situ photoresist material for patterning HgCdTe infrared detector arrays with all process steps done in vacuum. We have also demonstrated 100nm line widths using NSOM writing with a photolithography goal. Direct patterning of a-Si:H could simplify the manufacturing of thin film transistors, or other devices that require patterned silicon films.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1999