Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T20:49:09.368Z Has data issue: false hasContentIssue false

Response of the Electric Field Gradient in Ion implanted BaTiO3 to an External Electric Field

Published online by Cambridge University Press:  21 March 2011

Marc Dietrich
Affiliation:
Fachbereich Physik, Universität Konstanz, D-78457 Konstanz, Germany
Jörn Bartels
Affiliation:
Institut für Strahlen- und Kernphysik, Universität Bonn, D-53115 Bonn, Germany
Manfred Deicher
Affiliation:
Fachbereich Physik, Universität Konstanz, D-78457 Konstanz, Germany
Kristian Freitag
Affiliation:
Institut für Strahlen- und Kernphysik, Universität Bonn, D-53115 Bonn, Germany
Vyacheslav Samokhvalov
Affiliation:
Institut für Angewandte Physik, TU Bergakademie Freiberg, D-09596 Freiberg, Germany
Sepp Unterricker
Affiliation:
Institut für Angewandte Physik, TU Bergakademie Freiberg, D-09596 Freiberg, Germany
Get access

Abstract

Single crystalline, ferroelectric BaTiO3 as material with the highest piezoelectric constants among the perovskites with ordered sublattices was implanted with 111In(111Cd). The electric field gradient at the Ti position was measured with perturbed γγ-angular correlation spectroscopy (PAC) while the crystal was exposed to an external electric field. A quadratic dependence could be observed: νQ(E) = (34.8(1) + 0.16(4) E/kV/mm + 0.080(2) E2/kV2/mm2) MHz. Point charge model calculations reproduce the linear change of Vzz, but not the quadratic term. The polarizability of the host ions of BaTiO3 is known to be nonlinear with respect to an electric field. The resulting quadratic shift of the electron density is reflected in the strength of the EFG.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Catchen, G.L., Evenson, W.E. and Alred, D., Phys. Rev., B54, R3679 (1996).10.1103/PhysRevB.54.R3679Google Scholar
2. Rinneberg, H.H., Schwartz, G.P. and Shirley, D.A., Hyp. Int., 3, 97 (1977).10.1007/BF01021542Google Scholar
3. Marx, G. and Vianden, R., Physics Letters, A210, 364 (1996).Google Scholar
4. Blaha, P., Schwarz, K. and Luitz, J., WIEN97, (Techn. Univ. Wien 1999).Google Scholar
5. Wette, F.W. de, Phys. Rev., 123, 103 (1961).10.1103/PhysRev.123.103Google Scholar
6. Kratzig, E., Welz, F., Orlowski, R., Doormann, V. and Rosenkranz, M., Solid State Comm., 34, 817 (1980).10.1016/0038-1098(80)91059-5Google Scholar
7. Moretti, P., Thevenard, P., Godefroy, G., Sommerfeld, R., Hertel, P. and Krätzig, E., phys. stat. sol., a117, K85 (1990).10.1002/pssa.2211170155Google Scholar
8. Uhrmacher, M., Krishnamurty, V.V., Lieb, K.-P., López-Garcia, A. and Neubauer, M., Z. Phys. Chem., 206, 249 (1998).10.1524/zpch.1998.206.Part_1_2.249Google Scholar
9. Catchen, G.L. and Rasera, R.L., Ferroelectrics (UK), 120, 33 (1991).10.1080/00150199108216797Google Scholar
10. Schäfer, G., Herzog, P. and Wolbeck, B., Z. Physik, A257, 336 (1972).10.1007/BF01392991Google Scholar
11. , Landolt-Börnstein III/3, (Springer 1969).Google Scholar
12. Schatz, G., Weidinger, A., Nuclear condensed matter physics: nuclear methods and applications, transl. Gardner, J.A., (John Wiley & Sons, 1995).Google Scholar
13. Wimmer, E., Krakauer, H., Weinert, M. and Freeman, A.J., Phys. Rev., B24, 864 (1981).10.1103/PhysRevB.24.864Google Scholar
14. Perdew, J.P., Burke, S. and Ernzerhof, M., Phys. Rev. Let., 77, 3865 (1996).10.1103/PhysRevLett.77.3865Google Scholar
15. Megaw, H.D., Acta Cryst., 15, 972 (1962).Google Scholar
16. Feiock, F.D., Johnson, W.R., Phys. Rev., 187, 39 (1969).10.1103/PhysRev.187.39Google Scholar
17. Kanert, O., Schulz, H., Albers, J., Solid State Comm., 91, 465 (1994).10.1016/0038-1098(94)90787-0Google Scholar
18. Weyrich, K.H., Madenach, R.P., Ferroelectrics, 111, 9 (1990).10.1080/00150199008217594Google Scholar
19. , Landolt-Börnstein III/28a, (Springer, 1990).Google Scholar
20. , Landolt-Börnstein III/16a, (Springer, 1981).Google Scholar