Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-29T04:23:37.327Z Has data issue: false hasContentIssue false

Revealing the electronic band structure of quasi-free trilayer graphene on SiC(0001)

Published online by Cambridge University Press:  19 June 2014

C. Coletti*
Affiliation:
Center for Nanotechnology Innovation @ NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, I-56127 Pisa, IT Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, D-70569 Stuttgart, DE
S. Forti
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, D-70569 Stuttgart, DE
A. Principi
Affiliation:
NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, I-56126 Pisa, IT
K.V. Emtsev
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, D-70569 Stuttgart, DE
A.A. Zakharov
Affiliation:
MAX-lab, Lund University, Lund, S-22100, SE
K.M. Daniels
Affiliation:
University of South Carolina, 301 S. Main St, Columbia, SC 29208, USA
B.K. Daas
Affiliation:
University of South Carolina, 301 S. Main St, Columbia, SC 29208, USA
M.V.S. Chandrashekhar
Affiliation:
University of South Carolina, 301 S. Main St, Columbia, SC 29208, USA
A.H. MacDonald
Affiliation:
Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA
M. Polini
Affiliation:
NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, I-56126 Pisa, IT
U. Starke
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, D-70569 Stuttgart, DE
Get access

Abstract

Recently, much attention has been devoted to trilayer graphene because it displays stacking and electric field dependent electronic properties well-suited for electronic and photonic applications [1-8]. Several theoretical studies have predicted the electronic dispersion of Bernal (ABA) and rhombohedral (ABC) stacked trilayers. However, a direct experimental visualization of a well-resolved band structure has not yet been reported. In this work, we obtain large area highly homogenous quasi-free trilayer graphene (TLG) on 6H-SiC(0001) and measure its electronic bands via angle resolved photoemission spectroscopy (ARPES). We demonstrate by low energy electron microscopy measurements that that trilayer domains on SiC extend over areas of tens of square micrometers. By fitting tight-binding bands to the experimental data we extract the interatomic hopping parameters for Bernal and rhombohedral stacked trilayers. For ABC stacks and in the presence of an electrostatic asymmetry, we detect the existence of a band-gap of about 120 meV. Notably our results suggest that on SiC substrates the occurrence of ABC-stacked TLG is significantly higher than in natural bulk graphite. Hence, growing TLG on SiC might be the answer to the challenge of controllably synthesizing ABC-stacked trilayer – an ideal material for the fabrication of a new class of gap-tunable devices.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Min, H., and MacDonald, A. H., Prog. Theor. Phys. Suppl. 176, 227 (2008).CrossRefGoogle Scholar
Zhang, F., Sahu, B., Min, H. and MacDonald, A. H., Phys. Rev. B 82, 035409 (2010).CrossRefGoogle Scholar
Koshino, M., Phys. Rev. B 81, 125304 (2010).CrossRefGoogle Scholar
Craciun, M. F. et al. ., Nature Nanotechn. 4, 383388 (2009).CrossRefGoogle Scholar
Lui, C. H., Li, Z., Mak, K. F., Cappelluti, E., and Heinz, T. F., Nature Phys. 7, 944947 (2011).CrossRefGoogle Scholar
Bao, W. et al. ., Nature Phys. 7, 948952 (2011).CrossRefGoogle Scholar
Zhang, L., Zhang, Y., Camacho, J., Khodas, M., and Zaliznyak, I., Nature Phys. 7, 953957 (2011).CrossRefGoogle Scholar
Yacoby, A., Nature Phys. 7, 925926 (2011).CrossRefGoogle Scholar
Guinea, F., Castro Neto, A. H., and Peres, N. M. R., Phys. Rev. B 73, 245426 (2006).CrossRefGoogle Scholar
Aoki, M., and Amawashi, H., Solid State Communications 142, 123127 (2007).CrossRefGoogle Scholar
Grüneis, A. et al. ., Phys. Rev. B 78, 205425 (2008).CrossRefGoogle Scholar
Koshino, M., and McCann, E., Phys. Rev. B 80, 165409 (2009).CrossRefGoogle Scholar
Avetisyan, A. A., Partoens, B., and Peeters, F. M., Phys. Rev. B 81, 115432 (2010).CrossRefGoogle Scholar
Lipson, H., and Stokes, A. R., Proc. R. Soc. A 101, 181 (1942).Google Scholar
Lui, C. H., Li, Z., Chen, Z., Klimov, P. V., Brus, L. E., and Heinz, T. F., Nano Lett. 11, 164169 (2011).CrossRefGoogle Scholar
Ohta, T. et al. ., Phys. Rev. Lett. 98, 206802 (2007).CrossRefGoogle Scholar
Riedl, C., Coletti, C., Iwasaki, T., Zakharov, A. A., Starke, U., Phys. Rev. Lett. 103, 246804 (2009).CrossRefGoogle Scholar
Coletti, C., Forti, S., Principi, A., Emtsev, K.V., Zakharov, A.A., Daniels, K.M., Daas, B.K., Chandrashekhar, M.V.S., Ouisse, T., Chaussende, D., MacDonald, A. H., Polini, M., and Starke, U., ,Phys. Rev. B 88, 155439 (2013).CrossRefGoogle Scholar
Daas, B. K., Daniels, K. M., Sudarshan, T. S., and Chandrashekhar, M. V. S., J. Appl. Phys. 110, 113114, (2011).CrossRefGoogle Scholar
Emtsev, K. V., Speck, F., Seyller, T., Ley, L., and Riley, J. D., Phys. Rev. B 77, 155303 (2008).CrossRefGoogle Scholar
McCann, E., and Fal’ko, V. I., Phys. Rev. Lett. 96, 086805 (2006).CrossRefGoogle Scholar
Starke, U., Forti, S., Emtsev, K.V., and Coletti, C., MRS Bulletin 37(12), pp. 11771186 (2012).CrossRefGoogle Scholar
Ohta, T., Bostwick, A., Seyller, T., Horn, K., and Rotenberg, E., Science 313, 951 (2006).CrossRefGoogle Scholar
Coletti, C., Riedl, C., Lee, D. S., Krauss, B., von Klitzing, K., Smet, J., and Starke, U., Phys. Rev. B 81, 235401 (2010).CrossRefGoogle Scholar
Forti, S., Emtsev, K. V., Coletti, C., Zakharov, A. A., and Starke, U., Phys. Rev. B 84, 125449 (2011).CrossRefGoogle Scholar
Seyller, T., J. Phys.: Condens. Matter 16, S1755 (2004).Google Scholar
Coletti, C., Frewin, C.L., Hoff, A.M., and Saddow, S.E., Electrochemical and Solid-State Letters 11(10), H285H287 (2008).CrossRefGoogle Scholar
Coletti, C., Forti, S., Emtsev, K. V., and Starke, U., GraphITA 2011: Selected papers from the Workshop on Fundamentals and Applications of Graphene, Carbon Nanostructures, pp. 3949, Springer Berlin Heidelberg (2012).CrossRefGoogle Scholar
Goler, S. et al. ., Carbon 51, 249254 (2013).CrossRefGoogle Scholar
Riedl, C., Coletti, C., and Starke, U., J. Phys. D: Appl. Phys. 43 374009 (2010).CrossRefGoogle Scholar
Ristein, J., Mammadov, S., and Seyller, T., Phys. Rev. Lett. 108, 246104 (2012).CrossRefGoogle Scholar
Mucha-Kruczyński, M., Tsyplyatyev, O., Grishin, A., McCann, E., Fal’ko, V. I., Bostwick, A., and Rotenberg, E., Phys. Rev. B 77, 195403 (2008).CrossRefGoogle Scholar
Norimatsu, W., and Kusunoki, M., Phys. Rev. B 81, 161410 (2010).CrossRefGoogle Scholar
Malard, L. M., Nilsson, J., Elias, D. C., Brant, J. C., Plentz, F., Alves, E. S., Castro Neto, A. H., and Pimenta, M. A., Phys. Rev. B 76, 201401(R) (2007).CrossRefGoogle Scholar
Coletti, C., Emtsev, K. V., Zakharov, A. A., Ouisse, T., Chaussende, D., and Starke, U., Appl. Phys. Lett. 99, 081904 (2011).5CrossRefGoogle Scholar