Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T06:44:03.107Z Has data issue: false hasContentIssue false

Reversible Tuning of the Electronic Properties of Graphene via Controlled Exposure to Electron Beam Irradiation and Annealing

Published online by Cambridge University Press:  30 August 2011

Desalegne Teweldebrhan
Affiliation:
Nano-Device Laboratory, Bourne College of Engineering, University of California – Riverside, Riverside, CA 92521 U.S.A. Material Science and Engineering Program, University of California – Riverside, Riverside, CA 92521 U.S.A.
Guanxiong Liu
Affiliation:
Nano-Device Laboratory, Bourne College of Engineering, University of California – Riverside, Riverside, CA 92521 U.S.A.
Alexander A. Balandin
Affiliation:
Nano-Device Laboratory, Bourne College of Engineering, University of California – Riverside, Riverside, CA 92521 U.S.A. Material Science and Engineering Program, University of California – Riverside, Riverside, CA 92521 U.S.A.
Get access

Abstract

Graphene reveals many extraordinary properties including extremely high room temperature carrier mobility and intrinsic thermal conductivity. Understanding how to controllably modify graphene’s properties is essential for its proposed applications. Here we report on a method for tuning the electrical properties of graphene via electron beam irradiation. It was observed that single-layer graphene is highly susceptible to the low-energy electron beams. We demonstrated that by controlling the irradiation dose one can change, by desired amount, the carrier mobility, shift the charge neutrality point, increase the resistance at the minimum conduction point, induce the “transport gap” and achieve current saturation in graphene. The change in graphene properties is due to defect formation on the graphene surface and in the graphene lattice. The changes are reversible by annealing until some critical irradiation dose is reached.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., Firsov, A. A., Science, 306. 666669 (2004).Google Scholar
2. Zhang, Y. B., Tan, Y. W., Stormer, H. L., and Kim, P., Nature, 438, 201204 (2005).Google Scholar
3. Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F. and Lau, C.N., Nano Lett., 8, 902907 (2008).Google Scholar
4. Ghosh, S., Calizo, I., Teweldebrhan, D., Pokatilov, E.P., Nika, D.L., Balandin, A.A., Bao, W., Miao, F. and Lau, C. N., Appl. Phys. Lett., 92, 151911151913 (2008).Google Scholar
5. Elias, D. C., Nair, R. R., Mohiuddin, T. M. G., Morozov, S. V., Blake, P., Halsall, M. P., Ferrari, A. C., Boukhvalov, D. W., Katsnelson, M. I., Geim, A. K., Novoselov, K. S., Science, 323, 610613 (2009).Google Scholar
6. Ryu, S., Han, M. Y., Maultzsch, J., Heinz, T. F., Kim, P., Steigerwald, M. L. and Brus, L. E., Nano Lett., 8, 45974602 (2008).Google Scholar
7. Chen, J. H., Jang, C., Adam, S., Fuhrer, M. S., Williams, E. D. & Ishigami, M., Nature Physics, 4, 377381 (2008). ; J. H. Chen, W. G. Cullen, C. Jang, M. S. Fuhrer and E. D. Williams, Phys. Rev. Lett., 102, 236805-236808(2009).Google Scholar
8. Nair, R. R., Ren, W., Jalil, R., Riaz, I., Kravets, V. G., Britnell, L., Blake, P., Schedin, F., Mayorov, A. S., Yuan, S., Katsnelson, M. I., Cheng, H.-M., Strupinski, W., Bulusheva, L. G., Okotrub, A. V., Grigorieva, I. V., Grigorenko, A. N., Novoselov, K. S., Geim, A. K., Small, 6, 28772884 (2010).Google Scholar
9. Teweldebrhan, D. and Balandin, A. A., Appl. Phys. Lett., 94, 013101 (2009).Google Scholar
10. Teweldebrhan, D. and Balandin, A.A., Appl. Phys. Lett., 95, 246102 (2009).Google Scholar
11. Liu, G., Teweldebrhan, D., and Balandin, A.A., IEEE Trans. Nanotechnology, 1, 10.1109/TNANO.2010.2087391 (2010).Google Scholar
12. Calizo, I., Ghosh, S., Miao, F., Bao, W., Lau, C.N. and Balandin, A.A., Solid State Communications, 149, 11321135 (2009).Google Scholar
13. Calizo, I., Teweldebrhan, D., Bao, W., Miao, F., Lau, C. N., and Balandin, A. A., Journal of Physics: Conf. Ser., 109, 012008 (2008).Google Scholar
14. Ferrari, A. C. and Robertson, J., Phys. Rev. B, 61, 1409514107 (2000).Google Scholar
15. Kim, S., Nah, J., Jo, I., Shahrjerdi, D., Colombo, L., Yao, Z., Tutuc, E. and Banerjee, S. K., Appl. Phys. Lett., 94, 062107062109 (2009).Google Scholar
16. Liao, L., Bai, J., Qu, Y., Lin, Y., Li, Y., Huang, Y., and Duan, X., PNAS, 107, 67116715 (2010).Google Scholar
17. Adam, S., Hwang, E. H., Galitski, V. M., and Das Sarma, S., PNAS, 104, 1839218397(2007).Google Scholar