No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
Modeling predictions and experimental measurements were obtained to characterize the electro-mechanical response of radio frequency (RF) microelectromechanical (MEM) switches due to variations in surface roughness and finite asperity deformations. A Weierstrass-Mandelbrot fractal representation was used to generate three-dimensional surface roughness profiles. Contact asperity deformations due to applied contact pressures, were then obtained by a creep constitutive formulation. The contact pressure is derived from the interrelated effects of roughness characteristics, material hardening and softening, temperature increases due to Joule heating, and contact forces. The numerical predictions were qualitatively consistent with the experimental measurements and observations of how contact resistance evolves as a function of deformation time history. This study provides a framework that is based on an integrated modeling and experimental measurements, which can be used in design of reliable RF MEMS devices with extended life cycles.