Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-15T06:55:00.388Z Has data issue: false hasContentIssue false

Rigidity Constraints in Amorphization of Multiply-Polytopic Multiply-Connected Ceramic Structures

Published online by Cambridge University Press:  15 February 2011

Linn W. Hobbs
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139-4307
C. Esther Jesurum
Affiliation:
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139-4307
Bonnie Bergert
Affiliation:
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139-4307 Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139-4307
Get access

Abstract

The ease with which ceramic structures amorphize under displacive radiation is considered from the point of view of connectivity and the consequent topological constraints which impose rigidity on the original atomic arrangement. These constraints define a measure of topological freedom to rearrange which has been shown previously to correlate with measured energy deposition density during ion-induced amorphization. That earlier assessment of topological freedoms is extended here to include more complex connectivities and is shown to be representable in an analytical form which reflects the progressive destruction of topological constraints.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. McHargue, C. J., Sklad, P. S. and White, C. W., Nucl. Instrum. Meth. B46 (1990) 79.Google Scholar
2. Motta, A. T., J. Nucl. Mater. 244 (1997) 227.Google Scholar
3. Ewing, R. C., Wang, L. M. and Weber, W. J., Mater. Res. Soc. Symp. Proc. 373 (1995) 346.Google Scholar
4. Hobbs, L. W., J. Non-Cryst. Solids 192 (1995) 79.Google Scholar
5. Hobbs, L. W., Jesurum, C. E., Pulim, V. and Berger, B., Philos. Mag. A78 (1998) 679.Google Scholar
6. Hobbs, L. W., Nucl. Instrum. Meth. B91 (1994) 30.Google Scholar
7. Gupta, P. K., J. Amer. Ceram. Soc. 76 (1993) 1088.Google Scholar
8. Hobbs, L. W., Sreeram, A. N., Jesurum, C. E. and Berger, B., Nucl. Instrum. Meth. B166 (1996) 18.Google Scholar
9. Ziegler, J. F., Biersack, J. P. and Littmark, U., The Stopping Power of Ions in Solids, Pergamon, New York, 1985.Google Scholar
10. Zinkle, S. J. and Kinoshita, C. K., J. Nucl. Mater. 251 (1997) 200.Google Scholar
11. Naguib, H. M. and Kelly, R., Radiat. Effects 25 (1975) 1.Google Scholar
12. Matzke, Hj., Radiat. Effects 64 (1982) 3.Google Scholar
13. Wang, S. X., Wang, L. M., Ewing, R. C. and Doremus, R. H., J. Non-Cryst. Solids 238 (1998) 198,214.Google Scholar
14. Hobbs, L. W., Jesurum, C. E. and Berger, B., in: Rigidity Theory and Applications, ed. Duxbury, P. M. and Thorpe, M. F., Plenum Press, New York, 1999, pp. 191216.Google Scholar
15. Gupta, P. K. and Cooper, A. R., J. Non-Cryst. Solids 123 (1990) 14.Google Scholar
16. Jesurum, C. E., Pulim, V., Berger, B. and Hobbs, L. W., Mater. Sci. Eng. A 253 (1999) 16.Google Scholar
17. Eby, R. K., Ewing, R. C. and Birtcher, R. C., J. Mater. Res. 7 (1992) 3080.Google Scholar
18. Gong, W. L., Wang, L. M., Ewing, R. C. and Zhang, J., Phys. Rev. 54 (1996) 3800.Google Scholar
19. Boise, W., Peteves, S. D. and Saris, F. W., Appl. Phys. A58 (1994) 493.Google Scholar
20. Boise, W., Nucl. Instrum. Meth. B141 (1998) 133.Google Scholar
21. Weber, W. J., Yu, N. and Wang, L. M., J. Nucl. Mater. 253 (1998) 53.Google Scholar
22. Sickafus, K. E., Matzke, Hj., Yasua, K., Chodak, P. III, et al. , Nuci, Instrum. Meth. B141 (1998) 358.Google Scholar
23. Matzke, Hj. and Wang, L. M., J. Nucl. Mater. 231 (1996) 155.Google Scholar
24. Meldrum, A., Boatner, L. A. and Ewing, R. C., Nucl. Instrum. Meth. B141 (1998) 353.Google Scholar
25. Sreeram, A. N. and Hobbs, L. W., Mater. Res. Soc. Symp. Proc. 279 (1993) 559; 321 (1994) 26.Google Scholar
26. Abe, H., Naramoto, H. and Kinoshita, C., Mater. Res. Soc. Symp. Proc. 373 (1995) 383.Google Scholar
27. Lindner, J. K. N., Zuschlag, R. and Kaat, E. H. te, Nucl. Instrum. Meth. B62 (1992) 314.Google Scholar
28. Snead, L. L. and Zinkle, S. J., Mater. Res. Soc. Symp. Proc. 439 (1997) 595.Google Scholar
29. Devanathan, R., Weber, W. J. and Rubia, T. Diaz de la, Nucl. Instrum. Meth. B141 (1998) 118.Google Scholar
30. Boise, W., Nucl Instrum. Meth. B141 (1998) 133.Google Scholar
31. Boise, W., Conrad, J., Harbsmeier, F., Borowski, M., Rödle, T., Mater. Sci. Forum 248/249 (1997) 319.Google Scholar
32. Inui, H., Mori, H. and Sakata, T., Philos. Mag. B65 (1992) 1; B66 (1992) 737.Google Scholar
33. Weber, W. J., Yu, N. and Wang, L. M., J. Nucl. Mater. 253 (1998) 53.Google Scholar
34. Dove, M. T., Heine, V. and Hammonds, K. D., Min. Mag. 59 (1995) 629; M. T. Dove, in [14], p. 349.Google Scholar
35. Weber, W. J., Ewing, R. C. and Meldrum, A., J. Nucl. Mater. 250 (1997) 147.Google Scholar
36. Sickafus, K. E., Yu, N. and Nastasi, M., Los Alamos Nat. Lab. Report LA-UR 96-1382 (1996).Google Scholar
37. Devanathan, R., Weber, W. J., Sickafus, K. E. et al. , Nucl. Instrum. Meth. B141 (1998) 366.Google Scholar
38. Hartmann, T., Weber, W. J., Yu, N. et al. , Nucl. Instrum. Meth. B141 (1998) 398.Google Scholar
39. Sreeram, A. N., Hobs, L. W., Bordes, N. and Ewing, R. C., Nucl. Instrum. Meth. B116 (1996) 126.Google Scholar
40. Zinkle, S. J., Snead, L. L. et al. , Mater.Res. Soc. Symp. Proc. 540 (1999) 302 Google Scholar