Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-10T08:39:17.305Z Has data issue: false hasContentIssue false

The Role of Carbon Contamination in Suspended Gold Nanowires

Published online by Cambridge University Press:  11 February 2011

Sergio B. Legoas
Affiliation:
Instituto de Física, Universidade Estadual de Campinas, 13083–970 Campinas, SP, Brazil
Douglas S. Galvão
Affiliation:
Instituto de Física, Universidade Estadual de Campinas, 13083–970 Campinas, SP, Brazil
Varlei Rodrigues
Affiliation:
Laboratório Nacional de Luz Síncrotron, 13084–971 Campinas, SP, Brazil
Daniel Ugarte
Affiliation:
Laboratório Nacional de Luz Síncrotron, 13084–971 Campinas, SP, Brazil
Get access

Abstract

Metallic nanowires represent very interesting systems due to new phenomena such as quantum conductance and unexpected long interatomic distances attaining 0.3–0.5 nm. These large distances represent a challenge for physical interpretation. In this work we present experimental data from transmission electron microscopy and results from ab initio density functional calculations for suspended gold chains. We show that large distances as 0.5 nm can be easily explained by the presence of carbon atoms as contaminants, while distances ranging from 0.29 up to 0.36 nm might be explained as resulting of a mixture of clean stressed and contaminated linear chains.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Landman, U., Luedtke, W.D., Burnham, N.A., and Colton, R.J., Science 248, 454 (1990).Google Scholar
2. Ohnishi, H., Kondo, Y., and Takayanagi, K., Nature (London) 395, 780 (1998).Google Scholar
3. Rodrigues, V. and Ugarte, D., Phys. Rev. B 63, 073405 (2001).Google Scholar
4. Kizuka, T., Umehaa, S., and Fujisawa, S., Jpn. J. Appl. Phys. 240, L71 (2001).Google Scholar
5. Agraït, N., Rodrigo, J.G., and Vieira, S., Phys. Rev. B 47, 12345 (1993).Google Scholar
6. Pascual, J.I., Mendez, J., Gomez-Herrero, J., Baro, A.M., García, N., and Binh, Vu Thien, Phys. Rev. Lett. 71, 1852 (1993).Google Scholar
7. Kizuka, T., Phys. Rev. Lett. 81, 4448 (1998).Google Scholar
8. Kondo, Y. and Takayanagi, K., Phys. Rev. Lett. 79, 3455 (1997).Google Scholar
9. Rodrigues, V., Fuhrer, T., and Ugarte, D., Phys. Rev. Lett. 85, 4124 (2000).Google Scholar
10. Koizumi, H., Oshima, Y., Kondo, Y., and Takayanagi, K., Ultramicroscopy 88, 17 (2001).Google Scholar
11. Muller, C.J., van Ruitenbeek, J.M., and de Jongh, L.J., Physica (Amsterdam) 191C, 485 (1992).Google Scholar
12. Takai, Y., Kawasaki, T., Kimura, Y., Ikuta, T., Shimizu, R., Phys. Rev. Lett. 87, 106105 (2001).Google Scholar
13. Kondo, Y. and Takayanagi, K., Bull. Am. Phys. Soc. 44, 312 (1999).Google Scholar
14. Rodrigues, V., Bettini, J., Rocha, A.R., Rego, L.G.C., and Ugarte, D., Phys. Rev. B 65, 153402 (2002).Google Scholar
15. Rego, L.G.C., Rocha, A.R., Rodrigues, V., and Ugarte, D., in press.Google Scholar
16. Rodrigues, V. and Ugarte, D., Phys. Stat. Sol. B 230, 475 (2002).Google Scholar
17. Häkkinen, H., Barnett, R.N., and Landman, U., J. Phys. Chem. B 103, 8814 (1999).Google Scholar
18. Sørensen, M.R., Brandbyge, M., and Jacobsen, K.W., Phys. Rev. B 57, 3283 (1998).Google Scholar
19. Legoas, S.B., Galvão, D.S., Rodrigues, V., and Ugarte, D., Phys. Rev. Lett. 88, 076105 (2002).Google Scholar
20. Delley, B., J. Chem. Phys. 92, 508 (1990); 113, 7756 (2000).Google Scholar
21. TITAN is a program suite from Wavefunction, Inc. http://www.wavefun.com. Google Scholar
22. LACVP** represents a basis set (developed at Los Alamos National Laboratory) with effective core potentials (ECP).Google Scholar
23. Wang, Y. and Perdew, J.P., Phys. Rev. B 43, 8911 (1991).Google Scholar
24. Vosko, S.J., Wilk, L., and Nusair, M., Can. J. Phys. 58, 1200 (1980).Google Scholar