No CrossRef data available.
Published online by Cambridge University Press: 26 February 2011
We have synthesized spinel LiMn1.99Nd0.01O4 and LiMn1.99Ce0.01O4 powder by chemical synthesis method. The synthesized powders were used to prepare cathodes for Li ion coin cells. The structural and electrochemical properties were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammetry and charge-discharge studies, respectively. The cyclic voltammetry of the cathodes revealed the reversible nature of Li-ion intercalation in the cell. The charge-discharge characteristics for LiMn1.99Ce0.01O4 were obtained in 3.5 V – 4.8 V voltage range, while for LiMn1.99Nd0.01O4 the charge-discharge were carried out in 3.4 V – 4.4 V range. The initial discharge capacities of LiMn1.99Ce0.01O4 and LiMn1.99Nd0.01O4 were obtained as 134mAh/g and 149 mAh/g, respectively. The coin cells were tested for up to 25 charge-discharge cycles and after 25 cycles the discharge capacities were determined to 79.5 mAh/g and 132 mAh/g for LiMn1.99Ce0.01O4 and LiMn1.99Nd0.01O4 cathodes respectively. However, by doping with a small concentration of rare earth materials, like Ce and Nd reduces the capacity fading in pure LiMn2O4 cathodes making it suitable for Li-ion battery applications.